SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Alden M) srt2:(2020-2024)"

Sökning: WFRF:(Alden M) > (2020-2024)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lee, Eun-Young, et al. (författare)
  • Play, Learn, and Teach Outdoors—Network (PLaTO-Net) : terminology, taxonomy, and ontology
  • 2022
  • Ingår i: International Journal of Behavioral Nutrition and Physical Activity. - : BioMed Central (BMC). - 1479-5868. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: A recent dialogue in the field of play, learn, and teach outdoors (referred to as “PLaTO” hereafter) demonstrated the need for developing harmonized and consensus-based terminology, taxonomy, and ontology for PLaTO. This is important as the field evolves and diversifies in its approaches, contents, and contexts over time and in different countries, cultures, and settings. Within this paper, we report the systematic and iterative processes undertaken to achieve this objective, which has built on the creation of the global PLaTO-Network (PLaTO-Net). Methods: This project comprised of four major methodological phases. First, a systematic scoping review was conducted to identify common terms and definitions used pertaining to PLaTO. Second, based on the results of the scoping review, a draft set of key terms, taxonomy, and ontology were developed, and shared with PLaTO members, who provided feedback via four rounds of consultation. Third, PLaTO terminology, taxonomy, and ontology were then finalized based on the feedback received from 50 international PLaTO member participants who responded to ≥ 3 rounds of the consultation survey and dialogue. Finally, efforts to share and disseminate project outcomes were made through different online platforms. Results: This paper presents the final definitions and taxonomy of 31 PLaTO terms along with the PLaTO-Net ontology model. The model incorporates other relevant concepts in recognition that all the aspects of the model are interrelated and interconnected. The final terminology, taxonomy, and ontology are intended to be applicable to, and relevant for, all people encompassing various identities (e.g., age, gender, culture, ethnicity, ability). Conclusions: This project contributes to advancing PLaTO-based research and facilitating intersectoral and interdisciplinary collaboration, with the long-term goal of fostering and strengthening PLaTO’s synergistic linkages with healthy living, environmental stewardship, climate action, and planetary health agendas. Notably, PLaTO terminology, taxonomy and ontology will continue to evolve, and PLaTO-Net is committed to advancing and periodically updating harmonized knowledge and understanding in the vast and interrelated areas of PLaTO.
  •  
2.
  • Wang, Z., et al. (författare)
  • Hydroxyl radical dynamics in a gliding arc discharge using high-speed PLIF imaging
  • 2022
  • Ingår i: Plasma Research Express. - : IOP Publishing. - 2516-1067. ; 4:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma discharges can be transient and randomly distributed where a few investigations have been carried out using laser-induced fluorescence to capture snapshots of plasma-produced radicals in the near vicinity of the discharge. Radical distribution dynamics, however, are challenging to study in situ with high spatial and temporal resolution to fully capture the interactions between the discharge and the gas. We here demonstrate a planar laser-induced fluorescence method that can capture molecular distributions of ground state hydroxyl radicals in a discharge plasma and follow how the distribution develops in time with a repetition rate of 27 kHz. The technique is demonstrated by monitoring, in real-time, how the tube-like distribution of ground state OH radicals, surrounding a gliding arc plasma, is affected by flow dynamics and how it develops as the high voltage is turned off at atmospheric pressure. The method presented here is an essential tool for capturing radical-distribution dynamics in situ of chemically active environments which is the active region of the plasma induced chemistry.
  •  
3.
  • Armstrong, Joel, et al. (författare)
  • Progressive Cactus is a multiple-genome aligner for the thousand-genome era
  • 2020
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 587:7833, s. 246-251
  • Tidskriftsartikel (refereegranskat)abstract
    • New genome assemblies have been arriving at a rapidly increasing pace, thanks to decreases in sequencing costs and improvements in third-generation sequencing technologies(1-3). For example, the number of vertebrate genome assemblies currently in the NCBI (National Center for Biotechnology Information) database(4) increased by more than 50% to 1,485 assemblies in the year from July 2018 to July 2019. In addition to this influx of assemblies from different species, new human de novo assemblies(5) are being produced, which enable the analysis of not only small polymorphisms, but also complex, large-scale structural differences between human individuals and haplotypes. This coming era and its unprecedented amount of data offer the opportunity to uncover many insights into genome evolution but also present challenges in how to adapt current analysis methods to meet the increased scale. Cactus(6), a reference-free multiple genome alignment program, has been shown to be highly accurate, but the existing implementation scales poorly with increasing numbers of genomes, and struggles in regions of highly duplicated sequences. Here we describe progressive extensions to Cactus to create Progressive Cactus, which enables the reference-free alignment of tens to thousands of large vertebrate genomes while maintaining high alignment quality. We describe results from an alignment of more than 600 amniote genomes, which is to our knowledge the largest multiple vertebrate genome alignment created so far. The Progressive Cactus program can create reference-free alignments of hundreds of large vertebrate genomes efficiently, and is used for the alignment of more than 600 amniote genomes.
  •  
4.
  •  
5.
  • Feng, S., et al. (författare)
  • Modeling of micron-sized aluminum particle combustion in hot gas flow
  • 2024
  • Ingår i: Fuel. - 0016-2361. ; 369
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents a model for micron-sized aluminum (Al) particle combustion in hot oxidizing environments, forming hollow spheres. The model comprises four sub-models describing the physical and chemical processes during Al combustion: melting of the solid core, ejection of liquid Al droplets from the breaking solid shell, vaporization of liquid droplets, and ignition and establishment of vapor flame surrounding the solid particles. The model is of critical importance when the ambient gas temperature is higher than the melting point of the Al core, Tc,m, but lower than the alumina (Al2O3) shell's melting point, Ts,m. In the model, the Al core is assumed to be surrounded by a thin, compact alumina shell that blocks the diffusion of oxidizer into the core and prevents surface reactions. The alumina shell's cracking and liquid Al's eruption are triggered by thermal expansion and pressure buildup in the liquid core. The splashed liquid Al droplets vaporize quickly and initiate gas-phase reactions, followed by the vaporization of the liquid Al core as the particle temperature Tp increases. Al vapor combustion heat is redistributed to simulate the gaseous flame near the particle. The model is implemented using the Lagrangian particle tracking method and is validated through simulations of micron-sized Al particle combustion in hot gas and comparison with experiments. The results can explain the formation of the sharp-edged holes on hollow aluminum oxide spheres and the ignition behavior observed in the experiments.
  •  
6.
  • Pignatelli, F., et al. (författare)
  • Pilot impact on turbulent premixed methane/air and hydrogen-enriched methane/air flames in a laboratory-scale gas turbine model combustor
  • 2022
  • Ingår i: International Journal of Hydrogen Energy. - : Elsevier BV. - 0360-3199. ; 47:60, s. 25404-25417
  • Tidskriftsartikel (refereegranskat)abstract
    • The impact of pilot flame operation on the combustion of pure methane and hydrogen-enriched methane (H2/CH4: 50/50 in vol%) fuels was investigated in a gas turbine model combustor under atmospheric conditions. The burner assembly was designed to mimic the geometry of an industrial burner, the Siemens DLE Burner, in which a concentric annular ring equipped with pilot flame burners is implemented in the dome of the combustor. Two pilot burner configurations have been investigated: a non-premixed and a partially premixed pilot arrangement. The performance of the pilot burners was evaluated for varying Reynolds number (Re) and H2 enrichment. High-speed OH∗ chemiluminescence imaging, as well as simultaneous planar laser-induced fluorescence measurements of the OH radicals and formaldehyde (CH2O) were used for evaluating the dynamics and structures of the flames for different conditions. Furthermore, emission measurements were carried out to determine the influence of hydrogen dilution on the NOx and CO emission levels. The main findings are (a) the effect of the pilot flame is sensitive to the Reynolds number of the main flame and the type of the pilot flame, (b) the stability range becomes narrower with increasing hydrogen ratio, due to the tendency to flashback, (c) non-premixed pilot flames lower the NOx and increase the CO emissions, albeit rather small differences in the emissions have been detected, and (d) the NOx and CO emissions become significantly lower with increasing hydrogen ratio.
  •  
7.
  • Yu, S., et al. (författare)
  • Numerical Studies of the Pilot Flame Effect on a Piloted Jet Flame
  • 2022
  • Ingår i: Combustion Science and Technology. - : Informa UK Limited. - 0010-2202 .- 1563-521X. ; 194:2, s. 351-364
  • Tidskriftsartikel (refereegranskat)abstract
    • In a piloted jet flame, the pilot flame has an effect of stabilizing the main flame. Detailed mechanisms of pilot flame/main flame interaction are however not well studied. It is expected that the pilot flame affects the main flame through the following mechanisms: (a) the pilot flame provides the heat and radicals to the reaction zone of the main flame, (b) the pilot flame prevents the cold ambient air from being entrained into the main flame, and (c) the pilot flame modifies the stretch rate of the main flame. In this paper, detailed numerical simulations of piloted laminar methane/air jet flames are carried out to elucidate the effect of pilot flame on the structure and burning velocity of the main jet flame. One-dimensional (1D) freely propagating flame is also simulated to investigate the effect of hot gas mixing with the unburned fuel/air mixture, and 1D counter-flow flame is simulated to study the diffusion of the hot gas from the pilot flame to the reaction zone of the main flame and the effect of flame stretch. The results showed that heat transfer from the pilot flame to the main flame has a more significant effect on the structures and propagation of the main flame than the mass transfer from the pilot flame to the main flame. The heat and mass transfer from the pilot flame affects the local equivalence ratio and temperature of the unburned mixture, which gives rise to a significant enhancement of burning velocity. When the hot gas from the pilot flame is at sufficiently high temperatures, an ultra-lean fuel/air mixture can burn at equivalence ratio below the flammability limit. The reaction rate and burning velocity of ultra fuel-lean flames are enhanced by the strain rate, whereas for a main flame with the equivalence ratio closer to that of pilot flame, the reactivity and burning velocity of the main flame decrease with increasing strain rate.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy