SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Allshire Robin) srt2:(2007)"

Sökning: WFRF:(Allshire Robin) > (2007)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dunleavy, Elaine M., et al. (författare)
  • A NASP (N1/N2)-related protein, Sim3, binds CENP-A and is required for its deposition at fission yeast Centromeres
  • 2007
  • Ingår i: Molecular Cell. - : Elsevier BV. - 1097-2765 .- 1097-4164. ; 28:6, s. 1029-1044
  • Tidskriftsartikel (refereegranskat)abstract
    • A defining feature of centromeres is the presence of the histone H3 variant CENP-A(Cnp1). It is not known how CENP-A(Cnp1) is specifically delivered to, and assembled into, centromeric chromatin. Through a screen for factors involved in kinetochore integrity in fission yeast, we identified Sim3. Sim3 is homologous to known histone binding proteins NASP(Human) and N1/N2(Xenopus) and aligns with Hif1(S. cerevisiae), defining the SHNi-TPR family. Sim3 is distributed throughout the nucleoplasm, yet it associates with CENP-A(Cnp1) and also binds H3. Cells defective in Sim3 function have reduced levels of CENP-A(CnP1) at centromeres (and increased H3) and display chromosome segregation defects. Sim3 is required to allow newly synthesized CENP-A(Cnp1) to accumulate at centromeres in S and G2 phase-arrested cells in a replication-independent mechanism. We propose that one function of Sim3 is to act as an escort that hands off CENP-A(Cnp1) to chromatin assembly factors, allowing its incorporation into centromeric chromatin.
  •  
2.
  • Lejeune, Erwan, et al. (författare)
  • The chromatin-remodeling factor FACT contributes to centromeric heterochromatin independently of RNAi
  • 2007
  • Ingår i: Current Biology. - : Elsevier BV. - 0960-9822 .- 1879-0445. ; 17:14, s. 1219-1224
  • Tidskriftsartikel (refereegranskat)abstract
    • Centromeres exert vital cellular functions in mitosis and meiosis. A specialized histone and other chromatin-bound factors nucleate a dynamic protein assembly that is required for the proper segregation of sister chromatids. In several organisms, including the fission yeast, Schizosaccharomyces pombe, the RNAi pathway contributes to the formation of silent chromatin in pericentromeric regions. Little is known about how chromatin-remodeling factors contribute to heterochromatic integrity and centromere function. Here we show that the histone chaperone and remodeling complex FACT is required for centromeric-heterochromatin integrity and accurate chromosome segregation. We show that Spt16 and Pob3 are two subunits of the S. pombe FACT complex. Surprisingly, yeast strains deleted for pob3+ are viable and alleviate gene silencing at centromeric repeats and at the silent mating-type locus. Importantly, like heterochromatin and RNAi pathway mutants, Pob3 null strains exhibit lagging chromosomes on anaphase spindles. Whereas the processing of centromeric RNA transcripts into siRNAs is maintained in Pob3 mutants, Swi6-association with the centromere is reduced. Our studies provide the first experimental evidence for a role of the RNA polymerase II cofactor FACT in heterochromatin integrity and in centromere function.
  •  
3.
  • Opel, Michael, et al. (författare)
  • Genome-Wide Studies of Histone Demethylation Catalysed by the Fission Yeast Homologues of Mammalian LSD1
  • 2007
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 2:4
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to gain a more global view of the activity of histone demethylases, we report here genome-wide studies of the fission yeast SWIRM and polyamine oxidase (PAO) domain homologues of mammalian LSD1. Consistent with previous work we find that the two S. pombe proteins, which we name Swm1 and Swm2 (after SWIRM1 and SWIRM2), associate together in a complex. However, we find that this complex specifically demethylates lysine 9 in histone H3 (H3K9) and both up-and down-regulates expression of different groups of genes. Using chromatin-immunoprecipitation, to isolate fragments of chromatin containing either H3K4me2 or H3K9me2, and DNA microarray analysis (ChIP-chip), we have studied genome-wide changes in patterns of histone methylation, and their correlation with gene expression, upon deletion of the swm1(+) gene. Using hyper-geometric probability comparisons we uncover genetic links between lysine-specific demethylases, the histone deacetylase Clr6, and the chromatin remodeller Hrp1. The data presented here demonstrate that in fission yeast the SWIRM/PAO domain proteins Swm1 and Swm2 are associated in complexes that can remove methyl groups from lysine 9 methylated histone H3. In vitro, we show that bacterially expressed Swm1 also possesses lysine 9 demethylase activity. In vivo, loss of Swm1 increases the global levels of both H3K9me2 and H3K4me2. A significant accumulation of H3K4me2 is observed at genes that are up-regulated in a swm1 deletion strain. In addition, H3K9me2 accumulates at some genes known to be direct Swm1/2 targets that are down-regulated in the swm1 Delta strain. The in vivo data indicate that Swm1 acts in concert with the HDAC Clr6 and the chromatin remodeller Hrp1 to repress gene expression. In addition, our in vitro analyses suggest that the H3K9 demethylase activity requires an unidentified post-translational modification to allow it to act. Thus, our results highlight complex interactions between histone demethylase, deacetylase and chromatin remodelling activities in the regulation of gene expression.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy