SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Almén Markus Sällman) srt2:(2012)"

Sökning: WFRF:(Almén Markus Sällman) > (2012)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Almén, Markus Sällman, et al. (författare)
  • Genome wide analysis reveals association of a FTO gene variant with epigenetic changes
  • 2012
  • Ingår i: Genomics. - : Elsevier BV. - 0888-7543 .- 1089-8646. ; 99:3, s. 132-137
  • Tidskriftsartikel (refereegranskat)abstract
    • Variants of the FTO gene show strong association with obesity, but the mechanisms behind this association remain unclear. We determined the genome wide DNA methylation profile in blood from 47 female preadolescents. We identified sites associated with the genes KARS, TERF2IP, DEXI, MSI1,STON1 and BCAS3 that had a significant differential methylation level in the carriers of the FTO risk allele (rs9939609). In addition, we identified 20 differentially methylated sites associated with obesity. Our findings suggest that the effect of the FTO obesity risk allele may be mediated through epigenetic changes. Further, these sites might prove to be valuable biomarkers for the understanding of obesity and its comorbidites.
  •  
2.
  • Sällman Almén, Markus, et al. (författare)
  • The Dispanins : A Novel Gene Family of Ancient Origin That Contains 14 Human Members
  • 2012
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7:2, s. e31961-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Interferon induced transmembrane proteins (IFITM) are a family of transmembrane proteins that is known to inhibit cell invasion of viruses such as HIV-1 and influenza. We show that the IFITM genes are a subfamily in a larger family of transmembrane (TM) proteins that we call Dispanins, which refers to a common 2TM structure. We mined the Dispanins in 36 eukaryotic species, covering all major eukaryotic groups, and investigated their evolutionary history using Bayesian and maximum likelihood approaches to infer a phylogenetic tree. We identified ten human genes that together with the known IFITM genes form the Dispanin family. We show that the Dispanins first emerged in eukaryotes in a common ancestor of choanoflagellates and metazoa, and that the family later expanded in vertebrates where it forms four subfamilies (A-D). Interestingly, we also find that the family is found in several different phyla of bacteria and propose that it was horizontally transferred to eukaryotes from bacteria in the common ancestor of choanoflagellates and metazoa. The bacterial and eukaryotic sequences have a considerably conserved protein structure. In conclusion, we introduce a novel family, the Dispanins, together with a nomenclature based on the evolutionary origin.
  •  
3.
  • Sällman Almén, Markus, 1983- (författare)
  • The Membrane Proteome : Evolution, Characteristics and Classification
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Membrane proteins are found in all kingdoms of life and are essential for cellular interactions with the environment. Although a large research effort have been put into this group many membrane proteins remains uncharacterized, both in terms of function and evolutionary history. We have estimated the component of α-helical membrane proteins within the human proteome; the membrane proteome. We found that the human membrane proteome make up 27% of all protein, which we could classify the majority of into 234 families and further into three major functional groups: receptors, transporters or enzymes. We extended this analysis by determining the membrane proteome of 24 organisms that covers all major groups of eukaryotes. This comprehensive membrane protein catalog of over 100,000 proteins was utilized to determine the evolutionary history of all membrane protein families throughout eukaryotes.  We also investigated the evolutionary history across eukaryotes of the antiviral Interferon induced transmembrane proteins (IFITM) and the G protein-coupled receptor (GPCR) superfamily in detail.  We identified ten novel human homologs to the IFITM proteins, which together with the known IFITMs forms a family that we call the Dispanins. Using phylogenetic analysis we show that the Dispanins first emerged in eukaryotes in a common ancestor of choanoflagellates and animals, and that the family later expanded in vertebrates into four subfamilies. The GPCR superfamily was mined across eukaryotic species and we present evidence for a common origin for four of the five main human GPCR families; Rhodopsin, Frizzled, Adhesion and Secretin in the cAMP receptor family that was found in non-metazoans and invertebrates, but has been lost in vertebrates. Here we present the first accurate estimation of the human proteome together with comprehensive functional and evolutionary classification and extend it to organisms that represents all major eukaryotic groups. Moreover, we identify a novel protein family, the Dispanins, which has an evolutionary history that has been formed by horizontal gene transfer from bacteria followed by expansions in the animal lineage. We also study the evolution of the GPCR superfamily throughout eukaryotic evolution and provide a comprehensive model of the evolution and relationship of these receptors.
  •  
4.
  • Williams, Michael J., et al. (författare)
  • What model organisms and interactomics can reveal about the genetics of human obesity
  • 2012
  • Ingår i: Cellular and Molecular Life Sciences (CMLS). - : Springer Science and Business Media LLC. - 1420-682X .- 1420-9071. ; 69:22, s. 3819-3834
  • Forskningsöversikt (refereegranskat)abstract
    • Genome-wide association studies have identified a number of genes associated with human body weight. While some of these genes are large fields within obesity research, such as MC4R, POMC, FTO and BDNF, the majority do not have a clearly defined functional role explaining why they may affect body weight. Here, we searched biological databases and discovered 33 additional genes associated with human obesity (CADM2, GIPR, GPCR5B, LRP1B, NEGR1, NRXN3, SH2B1, FANCL, GNPDA2, HMGCR, MAP2K5, NUDT3, PRKD1, QPCTL, TNNI3K, MTCH2, DNAJC27, SLC39A8, MTIF3, RPL27A, SEC16B, ETV5, HMGA1, TFAP2B, TUB, ZNF608, FAIM2, KCTD15, LINGO2, POC5, PTBP2, TMEM18, TMEM160). We find that the majority have orthologues in distant species, such as D. melanogaster and C. elegans, suggesting that they are important for the biology of most bilateral species. Intriguingly, signalling cascade genes and transcription factors are enriched among these obesity genes, and several of the genes show properties that could be useful for potential drug discovery. In this review, we demonstrate how information from several distant model species, interactomics and signalling pathway analysis represents an important way to better understand the functional diversity of the surprisingly high number of molecules that seem to be important for human obesity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy