SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Alm J) srt2:(2015-2019)"

Sökning: WFRF:(Alm J) > (2015-2019)

  • Resultat 1-10 av 73
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Torbert, R. B., et al. (författare)
  • Electron-scale dynamics of the diffusion region during symmetric magnetic reconnection in space
  • 2018
  • Ingår i: Science. - : AMER ASSOC ADVANCEMENT SCIENCE. - 0036-8075 .- 1095-9203. ; 362:6421, s. 1391-1395
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetic reconnection is an energy conversion process that occurs in many astrophysical contexts including Earth's magnetosphere, where the process can be investigated in situ by spacecraft. On 11 July 2017, the four Magnetospheric Multiscale spacecraft encountered a reconnection site in Earth's magnetotail, where reconnection involves symmetric inflow conditions. The electron-scale plasma measurements revealed (i) super-Alfvenic electron jets reaching 15,000 kilometers per second; (ii) electron meandering motion and acceleration by the electric field, producing multiple crescent-shaped structures in the velocity distributions; and (iii) the spatial dimensions of the electron diffusion region with an aspect ratio of 0.1 to 0.2, consistent with fast reconnection. The well-structured multiple layers of electron populations indicate that the dominant electron dynamics are mostly laminar, despite the presence of turbulence near the reconnection site.
  •  
5.
  • Farrugia, C. J., et al. (författare)
  • MMS Observations of Reconnection at Dayside Magnetopause Crossings During Transitions of the Solar Wind to Sub-Alfvénic Flow
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - : Blackwell Publishing Ltd. - 2169-9380 .- 2169-9402. ; 122:10, s. 9934-9951
  • Tidskriftsartikel (refereegranskat)abstract
    • We present MMS observations during two dayside magnetopause crossings under hitherto unexamined conditions: (i) when the bow shock is weakening and the solar wind transitioning to sub-Alfvénic flow and (ii) when it is reforming. Interplanetary conditions consist of a magnetic cloud with (i) a strong B (∼20 nT) pointing south and (ii) a density profile with episodic decreases to values of ∼0.3 cm−3 followed by moderate recovery. During the crossings the magnetosheath magnetic field is stronger than the magnetosphere field by a factor of ∼2.2. As a result, during the outbound crossing through the ion diffusion region, MMS observed an inversion of the relative positions of the X and stagnation (S) lines from that typically the case: the S line was closer to the magnetosheath side. The S line appears in the form of a slow expansion fan near which most of the energy dissipation is taking place. While in the magnetosphere between the crossings, MMS observed strong field and flow perturbations, which we argue to be due to kinetic Alfvén waves. During the reconnection interval, whistler mode waves generated by an electron temperature anisotropy (Te⊥>Te∥) were observed. Another aim of the paper is to distinguish bow shock-induced field and flow perturbations from reconnection-related signatures. The high-resolution MMS data together with 2-D hybrid simulations of bow shock dynamics helped us to distinguish between the two sources. We show examples of bow shock-related effects (such as heating) and reconnection effects such as accelerated flows satisfying the Walén relation.
  •  
6.
  • Farrugia, C. J., et al. (författare)
  • Effects in the Near-Magnetopause Magnetosheath Elicited by Large-Amplitube Alfvenic Fluctuations Terminating in a Field and Flow Discontinuity
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 123:11, s. 8983-9004
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we report on a sequence of large-amplitude Alfvenic fluctuations terminating in a field and flow discontinuity and their effects on electromagnetic fields and plasmas in the near-magnetopause magnetosheath. An arc-polarized structure in the magnetic field was observed by the Time History of Events and Macroscale Interactions during Substorms-C in the solar wind, indicative of nonlinear Alfven waves. It ends with a combined tangential discontinuity/vortex sheet, which is strongly inclined to the ecliptic plane and at which there is a sharp rise in the density and a drop in temperature. Several effects resulting from this structure were observed by the Magnetospheric Multiscale spacecraft in the magnetosheath close to the subsolar point (11:30 magnetic local time) and somewhat south of the geomagnetic equator (-33 degrees magnetic latitude): (i) kinetic Alfven waves; (ii) a peaking of the electric and magnetic field strengths where E . J becomes strong and negative (-1 nW/m(3)) just prior to an abrupt dropout of the fields; (iii) evolution in the pitch angle distribution of energetic (a few tens of kilo-electron-volts) ions (H+, Hen+, and On+) and electrons inside a high-density region, which we attribute to gyrosounding of the tangential discontinuity/vortex sheet structure passing by the spacecraft; (iv) field-aligned acceleration of ions and electrons that could be associated with localized magnetosheath reconnection inside the high-density region; and (v) variable and strong flow changes, which we argue to be unrelated to reconnection at partial magnetopause crossings and likely result from deflections of magnetosheath flow by a locally deformed, oscillating magnetopause.
  •  
7.
  • Farrugia, C. J., et al. (författare)
  • Magnetospheric Multiscale Mission observations and non-force free modeling of a flux transfer event immersed in a super-Alfvenic flow
  • 2016
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 43:12, s. 6070-6077
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyze plasma, magnetic field, and electric field data for a flux transfer event (FTE) to highlight improvements in our understanding of these transient reconnection signatures resulting from high-resolution data. The similar to 20 s long, reverse FTE, which occurred south of the geomagnetic equator near dusk, was immersed in super-Alfvenic flow. The field line twist is illustrated by the behavior of flows parallel/perpendicular to the magnetic field. Four-spacecraft timing and energetic particle pitch angle anisotropies indicate a flux rope (FR) connected to the Northern Hemisphere and moving southeast. The flow forces evidently overcame the magnetic tension. The high-speed flows inside the FR were different from those outside. The external flows were perpendicular to the field as expected for draping of the external field around the FR. Modeling the FR analytically, we adopt a non-force free approach since the current perpendicular to the field is nonzero. It reproduces many features of the observations.
  •  
8.
  • Alm, L., et al. (författare)
  • EDR signatures observed by MMS in the 16 October event presented in a 2-D parametric space
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 122:3, s. 3262-3276
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a method for mapping the position of satellites relative to the X line using the measured B-L and B-N components of the magnetic field and apply it to the Magnetospheric multiscale (MMS) encounter with the electron diffusion region (EDR) which occurred on 13:07 UT on 16 October 2015. Mapping the data to our parametric space succeeds in capturing many of the signatures associated with magnetic reconnection and the electron diffusion region. This offers a method for determining where in the reconnection region the satellites were located. In addition, parametric mapping can also be used to present data from numerical simulations. This facilitates comparing data from simulations with data from in situ observations as one can avoid the complicated process using boundary motion analysis to determine the geometry of the reconnection region. In parametric space we can identify the EDR based on the collocation of several reconnection signatures, such as electron nongyrotropy, electron demagnetization, parallel electric fields, and energy dissipation. The EDR extends 2-3km in the normal direction and in excess of 20km in the tangential direction. It is clear that the EDR occurs on the magnetospheric side of the topological X line, which is expected in asymmetric reconnection. Furthermore, we can observe a north-south asymmetry, where the EDR occurs north of the peak in out-of-plane current, which may be due to the small but finite guide field.
  •  
9.
  • Fuselier, S. A., et al. (författare)
  • Mass Loading the Earth's Dayside Magnetopause Boundary Layer and Its Effect on Magnetic Reconnection
  • 2019
  • Ingår i: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007. ; 46:12, s. 6204-6213
  • Tidskriftsartikel (refereegranskat)abstract
    • When the interplanetary magnetic field is northward for a period of time, O+ from the high-latitude ionosphere escapes along reconnected magnetic field lines into the dayside magnetopause boundary layer. Dual-lobe reconnection closes these field lines, which traps O+ and mass loads the boundary layer. This O+ is an additional source of magnetospheric plasma that interacts with magnetosheath plasma through magnetic reconnection. This mass loading and interaction is illustrated through analysis of a magnetopause crossing by the Magnetospheric Multiscale spacecraft. While in the O+-rich boundary layer, the interplanetary magnetic field turns southward. As the Magnetospheric Multiscale spacecraft cross the high-shear magnetopause, reconnection signatures are observed. While the reconnection rate is likely reduced by the mass loading, reconnection is not suppressed at the magnetopause. The high-latitude dayside ionosphere is therefore a source of magnetospheric ions that contributes often to transient reduction in the reconnection rate at the dayside magnetopause.
  •  
10.
  • Torbert, R. B., et al. (författare)
  • Structure and Dissipation Characteristics of an Electron Diffusion Region Observed by MMS During a Rapid, Normal-Incidence Magnetopause Crossing
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 122:12, s. 11901-11916
  • Tidskriftsartikel (refereegranskat)abstract
    • On 22 October 2016, the Magnetospheric Multiscale (MMS) spacecraft encountered the electron diffusion region (EDR) when the magnetosheath field was southward, and there were signatures of fast reconnection, including flow jets, Hall fields, and large power dissipation. One rapid, normal-incidence crossing, during which the EDR structure was almost stationary in the boundary frame, provided an opportunity to observe the spatial structure for the zero guide field case of magnetic reconnection. The reconnection electric field was determined unambiguously to be 2-3 mV/m. There were clear signals of fluctuating parallel electric fields, up to 6 mV/m on the magnetosphere side of the diffusion region, associated with a Hall-like parallel current feature on the electron scale. The width of the main EDR structure was determined to be similar to 2 km (1.8 de). Although the MMS spacecraft were in their closest tetrahedral separation of similar to 8 km, the divergences and curls for these thin current structures could therefore not be computed in the usual manner. A method is developed to determine these quantities on a much smaller scale and applied to compute the normal component of terms in the generalized Ohm's law for the positions of each individual spacecraft (not a barocentric average). Although the gradient pressure term has a qualitative dependence that follows the observed variation of E + Ve x B, the quantitative magnitude of these terms differs by more than a factor of 2, which is shown to be greater than the respective errors. Thus, future research is required to find the manner in which Ohm's law is balanced. Plain Language Summary The Magnetospheric Multiscale (MMS) spacecraft observed the spatial structure of the region where magnetic energy is converted to particle flows and heat. New features of currents and fields parallel to the magnetic field are analyzed. Some discrepancies with present computer simulations are found within this region.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 73
Typ av publikation
tidskriftsartikel (51)
konferensbidrag (20)
forskningsöversikt (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (50)
övrigt vetenskapligt/konstnärligt (23)
Författare/redaktör
Alm, J (20)
Hansson, M (12)
Khotyaintsev, Yuri V ... (10)
Torbert, R. B. (10)
Ergun, R. E. (10)
Lindqvist, Per-Arne (9)
visa fler...
Scheynius, A (8)
Argall, M. R. (8)
Burch, J. L. (8)
Russell, C. T. (8)
Strangeway, R. J. (8)
Giles, B. L. (8)
Serre, G. (8)
KLARESKOG, L (7)
Alm, L (7)
Farrugia, C. J. (7)
Ronnelid, J (6)
Shuster, J. (6)
Lavraud, B. (6)
Skriner, K. (6)
Alfredsson, L (5)
Joelsson-Alm, E (5)
Krook, A (4)
Zierath, JR (4)
Matsui, H (4)
Cronhjort, M (4)
Martensson, J (4)
Alm, Love (4)
Samuelsson, Tore, 19 ... (4)
Alm, Sofie J., 1988 (4)
Palmqvist, Lars, 196 ... (4)
Fogelstrand, Linda, ... (4)
Fuselier, S. A. (4)
Svensen, C (4)
Holmdahl, R (3)
Johansson, C. (3)
Abrahamsson, Jonas, ... (3)
Koenig, W. (3)
Jukema, JW (3)
Jiang, X. (3)
Catrina, AI (3)
Marklund, Göran (3)
Hengstenberg, C. (3)
Ahmadi, N. (3)
Gershman, D. J. (3)
Dorelli, J. (3)
Paulson, K. (3)
Ridker, PM (3)
Tardif, JC (3)
Pollock, C. J. (3)
visa färre...
Lärosäte
Karolinska Institutet (50)
Uppsala universitet (18)
Kungliga Tekniska Högskolan (12)
Göteborgs universitet (8)
Lunds universitet (5)
Umeå universitet (3)
visa fler...
Linköpings universitet (3)
Chalmers tekniska högskola (3)
visa färre...
Språk
Engelska (73)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (14)
Medicin och hälsovetenskap (13)
Teknik (2)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy