SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Alsved Malin) srt2:(2023)"

Sökning: WFRF:(Alsved Malin) > (2023)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alsved, Malin, et al. (författare)
  • Infectivity of exhaled SARS-CoV-2 aerosols is sufficient to transmit covid-19 within minutes
  • 2023
  • Ingår i: Scientific Reports. - 2045-2322. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Exhaled SARS-CoV-2-containing aerosols contributed significantly to the rapid and vast spread of covid-19. However, quantitative experimental data on the infectivity of such aerosols is missing. Here, we quantified emission rates of infectious viruses in exhaled aerosol from individuals within their first days after symptom onset from covid-19. Six aerosol samples from three individuals were culturable, of which five were successfully quantified using TCID50. The source strength of the three individuals was highest during singing, when they exhaled 4, 36, or 127 TCID50/s, respectively. Calculations with an indoor air transmission model showed that if an infected individual with this emission rate entered a room, a susceptible person would inhale an infectious dose within 6 to 37 min in a room with normal ventilation. Thus, our data show that exhaled aerosols from a single person can transmit covid-19 to others within minutes at normal indoor conditions.
  •  
2.
  • Alsved, Malin, et al. (författare)
  • Size distribution of exhaled aerosol particles containing SARS-CoV-2 RNA
  • 2023
  • Ingår i: Infectious Diseases. - : Informa UK Limited. - 2374-4235 .- 2374-4243. ; 55:2, s. 158-163
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: SARS-CoV-2 in exhaled aerosols is considered an important contributor to the spread of COVID-19. However, characterizing the size distribution of virus-containing aerosol particles has been challenging as high concentrations of SARS-CoV-2 in exhaled air is mainly present close to symptom onset. We present a case study of a person with COVID-19 who was able to participate in extensive measurements of exhaled aerosols already on the day of symptom onset and then for the following three days. Methods: Aerosol collection was performed using an eight-stage impactor while the subject was breathing, talking and singing, for 30 min each, once every day. In addition, nasopharyngeal samples, saliva samples, room air samples and information on symptom manifestations were collected every day. Samples were analyzed by RT-qPCR for detection of SARS-CoV-2 RNA. Results: SARS-CoV-2 RNA was detected in seven of the eight particle size fractions, from 0.34 to >8.1 µm, with the highest concentrations found in 0.94–2.8 µm particles. The concentration of SARS-CoV-2 RNA was highest on the day of symptom onset, and declined for each day thereafter. Conclusion: Our data showed that 90% of the exhaled SARS-CoV-2 RNA was found in aerosol particles <4.5 µm, indicating the importance of small particles for the transmission of COVID-19 close to symptom onset. These results are important for our understanding of airborne transmission, for developing accurate models and for selecting appropriate mitigation strategies.
  •  
3.
  • Petersson Sjögren, Madeleine, et al. (författare)
  • Measurement report : Atmospheric fluorescent bioaerosol concentrations measured during 18 months in a coniferous forest in the south of Sweden
  • 2023
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7316. ; 23:9, s. 4977-4992
  • Tidskriftsartikel (refereegranskat)abstract
    • Biological aerosol particles affect human health, are essential for microbial and gene dispersal, and have been proposed as important agents for atmospheric processes. However, the abundance and size distributions of atmospheric biological particles are largely unknown. In this study we used a laser-induced fluorescence instrument to measure fluorescent biological aerosol particle (FBAP) concentrations for 18 months (October 2020-April 2022) at a rural, forested site in Sweden. The aim of this study was to investigate FBAP number concentrations (NFBAP) over time and analyze their relationship with meteorological parameters. NFBAP was highest in summer and lowest in winter, exhibiting a g1/4g5-fold difference between these seasons. The median NFBAP was 0.0050, 0.0025, 0.0027, and 0.0126gcm-3 in fall, winter, spring, and summer, respectively, and constituted g1/4g0.1-0.5g% of the total supermicron particle number concentration. NFBAP was dominated by the smallest measured size fraction (1-3gμm), suggesting that the main portions of the biological particles measured were due to single bacterial cells, fungal spores, and bacterial agglomerates. NFBAP was significantly correlated with increasing air temperature (P<0.01) in all seasons. For most of the campaign NFBAP was seen to increase with wind speed (P<0.01), while the relationship with relative humidity was for most of the campaign nonsignificant (46g%) but for a large part (30g%) negative (P<0.05). Our results indicate that NFBAP was highest during warm and dry conditions when wind speeds were high, suggesting that a major part of the FBAP in spring and summer was due to mechanical aerosol generation and release mechanisms. In fall, relative humidity may have been a more important factor in bioaerosol release. This is one of the longest time series of atmospheric FBAPs, which are greatly needed for estimates of bioaerosol background concentrations in comparable regions.
  •  
4.
  • Thuresson, Sara, et al. (författare)
  • Airborne SARS-CoV-2 during childbirth
  • 2023
  • Konferensbidrag (refereegranskat)abstract
    • Airborne SARS CoV 2 is considered to play a major role in covid 19 transmission, and has been found in several hospital environments. There is a need to investigate the presence of airborne SARS CoV 2 in other hospital areas than traditional infectious disease wards. The results from the present study can contribute to a better understanding of the risk of covid 19 transmission by aerosols at delivery wards.
  •  
5.
  • Thuresson, Sara, et al. (författare)
  • Airborne SARS-CoV-2 RNA collected during childbirth and autopsy
  • 2023
  • Konferensbidrag (refereegranskat)abstract
    • Airborne SARS-CoV-2 is considered to play a major role in covid-19 transmission, and several studies have reported its presence in hospital environments, including corridors, patient rooms, cohort rooms and ICUs (Dinoi et al., 2022). The risk of airborne virus have been associated with a number of factors, such as low ventilation, high patient viral load and in some cases, certain medical procedures.However, specific medical situations still deserve further investigation. One such situation of interest is childbirth, as respiratory emissions, which could contain virus, are increased due to heavy breathing during labor. Another situation with potential risk for airborne SARS-CoV-2 is autopsy.The aim of the current study was to further explore the presence of airborne SARS-CoV-2 RNA during childbirth and autopsy.The results in this study can increase our understanding about the risk of covid-19 transmission by aerosols at delivery wards and during autopsy, even though the sample material is small. Reports of airborne SARS-CoV-2 in hospital environments contribute to improving guidelines for protective equipment for healthcare personnel working with such patients.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy