SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Amanullah Rahman) srt2:(2020-2021)"

Sökning: WFRF:(Amanullah Rahman) > (2020-2021)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dhawan, Suhail, et al. (författare)
  • Magnification, dust, and time-delay constraints from the first resolved strongly lensed Type Ia supernova iPTF16geu
  • 2020
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 491:2, s. 2639-2654
  • Tidskriftsartikel (refereegranskat)abstract
    • We report lensing magnifications, extinction, and time-delay estimates for the first resolved, multiply imaged Type Ia supernova iPTF16geu, at z = 0.409, using Hubble Space Telescope (HST) observations in combination with supporting ground-based data. Multiband photometry of the resolved images provides unique information about the differential dimming due to dust in the lensing galaxy. Using HST and Keck AO reference images taken after the SN faded, we obtain a total lensing magnification for iPTF16geu of mu = 67.8(-2.9)(+2.6), accounting for extinction in the host and lensing galaxy. As expected from the symmetry of the system, we measure very short time-delays for the three fainter images with respect to the brightest one: -0.23 +/- 0.99,-1.43 +/- 0.74, and 1.36 +/- 1.07 d. Interestingly, we find large differences between the magnifications of the four supernova images, even after accounting for uncertainties in the extinction corrections: Delta m(1) = -3.88(-0.06)(+0.07), Delta m(2) = -2.99(-0.08)(+0.09), Delta m(3) = -2.19(-0.15)(+0.14), and Delta m(4) = -2.40(-0.12)(+0.14) mag, discrepant with model predictions suggesting similar image brightnesses. A possible explanation for the large differences is gravitational lensing by substructures, micro- or millilensing, in addition to the large-scale lens causing the image separations. We find that the inferred magnification is insensitive to the assumptions about the dust properties in the host and lens galaxy.
  •  
2.
  • Hayden, Brian, et al. (författare)
  • The HST See Change Program. I. Survey Design, Pipeline, and Supernova Discoveries
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 912:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The See Change survey was designed to make z > 1 cosmological measurements by efficiently discovering high-redshift Type Ia supernovae (SNe Ia) and improving cluster mass measurements through weak lensing. This survey observed twelve galaxy clusters with the Hubble Space Telescope (HST) spanning the redshift range z = 1.13-1.75, discovering 57 likely transients and 27 likely SNe Ia at z similar to 0.8-2.3. As in similar previous surveys, this proved to be a highly efficient use of HST for supernova observations; the See Change survey additionally tested the feasibility of maintaining, or further increasing, the efficiency at yet higher redshifts, where we have less detailed information on the expected cluster masses and star formation rates. We find that the resulting number of SNe Ia per orbit is a factor of similar to 8 higher than for a field search, and 45% of our orbits contained an active SN Ia within 22 rest-frame days of peak, with one of the clusters by itself yielding 6 of the SNe Ia. We present the survey design, pipeline, and supernova discoveries. Novel features include fully blinded supernova searches, the first random forest candidate classifier for undersampled IR data (with a 50% detection threshold within 0.05 mag of human searchers), real-time forward-modeling photometry of candidates, and semi-automated photometric classifications and follow-up forecasts. We also describe the spectroscopic follow-up, instrumental in measuring host galaxy redshifts. The cosmology analysis of our sample will be presented in a companion paper.
  •  
3.
  • Johansson, Joel, et al. (författare)
  • Spectroscopy of the first resolved strongly lensed Type Ia supernova iPTF16geu
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 502:1, s. 510-520
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the results from spectroscopic observations of the multiple images of the strongly lensed Type Ia supernova (SN Ia), iPTF16geu, obtained with ground-based telescopes and the Hubble Space Telescope (HST). From a single epoch of slitless spectroscopy with HST, we resolve spectra of individual lensed supernova images for the first time. This allows us to perform an independent measurement of the time-delay between the two brightest images, Delta t = 1.4 +/- 5.0 d, which is consistent with the time-delay measured from the light curves. We also present measurements of narrow emission and absorption lines characterizing the interstellar medium in the SN Ia host galaxy at z = 0.4087, as well as in the foreground lensing galaxy at z = 0.2163. We detect strong Naid absorption in the host galaxy, indicating that iPTF16geu belongs to a subclass of SNe Ia displaying 'anomalously' large Naid column densities compared to dust extinction derived from light curves. For the lens galaxy, we refine the measurement of the velocity dispersion, sigma = 129 +/- 4 kms(-1), which significantly constrains the lens model. We use ground-based spectroscopy, boosted by a factor similar to 70 from lensing magnification, to study the properties of a high-z SN Ia with unprecedented signal-to-noise ratio. The spectral properties of the supernova, such as pseudo-Equivalent widths of several absorption features and velocities of the Si II-line, indicate that iPTF16geu is a normal SN Ia. We do not detect any significant deviations of the SN spectral energy distribution from microlensing of the SN photosphere by stars and compact objects in the lensing galaxy.
  •  
4.
  • Mörtsell, Edvard, et al. (författare)
  • Lens modelling of the strongly lensed Type Ia supernova iPTF16geu
  • 2020
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 496:3, s. 3270-3280
  • Tidskriftsartikel (refereegranskat)abstract
    • In 2016, the first strongly lensed Type Ia supernova (SN Ia), iPTF16geu, at redshift z = 0.409 with four resolved images arranged symmetrically around the lens galaxy at z = 0.2163, was discovered. Here, refined observations of iPTF16geu, including the time delay between images, are used to decrease uncertainties in the lens model, including the the slope of the projected surface density of the lens galaxy, Sigma alpha r(1-eta), and to constrain the universal expansion rate H-0. Imaging with Hubble Space Telescope provides an upper limit on the slope., in slight tension with the steeper density profiles indicated by imaging with Keck after iPTF16geu had faded, potentially due to dust extinction not corrected for in host galaxy imaging. Since smaller. implies larger magnifications, we take advantage of the standard candle nature of SNe Ia constraining the image magnifications, to obtain an independent constraint of the slope. We find that a smooth lens density fails to explain the iPTF16geu fluxes, regardless of the slope, and additional substructure lensing is needed. The total probability for the smooth halo model combined with star microlensing to explain the iPTF16geu image fluxes is maximized at 12 per cent for eta similar to 1.8, in excellent agreement with Keck high-spatial-resolution data, and flatter than an isothermal halo. It also agrees perfectly with independent constraints on the slope from lens velocity dispersion measurements. Combining with the observed time delays between the images, we infer a lower bound on the Hubble constant, H-0 greater than or similar to 40 km s(-1) Mpc(-1), at 68.3 per cent confidence level.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy