SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ambrosi A) srt2:(2015-2019)"

Sökning: WFRF:(Ambrosi A) > (2015-2019)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • De Angelis, A., et al. (författare)
  • Science with e-ASTROGAM A space mission for MeV-GeV gamma-ray astrophysics
  • 2018
  • Ingår i: Journal of High Energy Astrophysics. - : Elsevier. - 2214-4048 .- 2214-4056. ; 19, s. 1-106
  • Tidskriftsartikel (refereegranskat)abstract
    • e-ASTROGAM ('enhanced ASTROGAM') is a breakthrough Observatory space mission, with a detector composed by a Silicon tracker, a calorimeter, and an anticoincidence system, dedicated to the study of the non-thermal Universe in the photon energy range from 0.3 MeV to 3 GeV - the lower energy limit can be pushed to energies as low as 150 keV for the tracker, and to 30 keV for calorimetric detection. The mission is based on an advanced space-proven detector technology, with unprecedented sensitivity, angular and energy resolution, combined with polarimetric capability. Thanks to its performance in the MeV-GeV domain, substantially improving its predecessors, e-ASTROGAM will open a new window on the non-thermal Universe, making pioneering observations of the most powerful Galactic and extragalactic sources, elucidating the nature of their relativistic outflows and their effects on the surroundings. With a line sensitivity in the MeV energy range one to two orders of magnitude better than previous generation instruments, e-ASTROGAM will determine the origin of key isotopes fundamental for the understanding of supernova explosion and the chemical evolution of our Galaxy. The mission will provide unique data of significant interest to a broad astronomical community, complementary to powerful observatories such as LIGO-Virgo-GEO600-KAGRA, SKA, ALMA, E-ELT, TMT, LSST, JWST, Athena, CTA, IceCube, KM3NeT, and LISA.
  •  
2.
  • Acharyya, A., et al. (författare)
  • Monte Carlo studies for the optimisation of the Cherenkov Telescope Array layout
  • 2019
  • Ingår i: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 111, s. 35-53
  • Tidskriftsartikel (refereegranskat)abstract
    • The Cherenkov Telescope Array (CTA) is the major next-generation observatory for ground-based veryhigh-energy gamma-ray astronomy. It will improve the sensitivity of current ground-based instruments by a factor of five to twenty, depending on the energy, greatly improving both their angular and energy resolutions over four decades in energy (from 20 GeV to 300 TeV). This achievement will be possible by using tens of imaging Cherenkov telescopes of three successive sizes. They will be arranged into two arrays, one per hemisphere, located on the La Palma island (Spain) and in Paranal (Chile). We present here the optimised and final telescope arrays for both CTA sites, as well as their foreseen performance, resulting from the analysis of three different large-scale Monte Carlo productions.
  •  
3.
  • de Angelis, A., et al. (författare)
  • All-sky-astrogam : A MeV companion for multimessenger astrophysics
  • 2019
  • Ingår i: Proceedings of Science. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • In the era of multi-messenger astronomy it is of paramount importance to have in space a gamma-ray monitor capable of detecting energetic transients in the energy range from 0.1 MeV to a few hundred MeV, with good imaging capabilities. The All-Sky-ASTROGAM mission proposal aims to place into an L2 orbit a gamma-ray instrument (~ 100 kg) dedicated to fast detection, localization, and gamma-ray spectroscopy of flaring and merging activity of compact objects in the Universe, with unprecedented sensitivity and polarimetric capability in the MeV range. The instrument is based on the ASTROGAM concept, which combines three detection systems of space-proven technology: a silicon tracker in which the cosmic gamma rays undergo Compton scattering or a pair conversion, a scintillation calorimeter to absorb and measure the energy of the secondary particles, and an anticoincidence system to veto the prompt reaction background induced by charged particles. The gamma-ray imager and the platform will be connected through a boom and will have almost no occultation, making possible a continuous monitoring of every single gamma-ray source in the sky during the entire mission lifetime.
  •  
4.
  • Tatischeff, V., et al. (författare)
  • The e-ASTROGAM gamma-ray space observatory for the multimessenger astronomy of the 2030s
  • 2018
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE - International Society for Optical Engineering. - 9781510619517
  • Konferensbidrag (refereegranskat)abstract
    • e-ASTROGAM is a concept for a breakthrough observatory space mission carrying a γ-ray telescope dedicated to the study of the non-thermal Universe in the photon energy range from 0.15 MeV to 3 GeV. The lower energy limit can be pushed down to energies as low as 30 keV for gamma-ray burst detection with the calorimeter. The mission is based on an advanced space-proven detector technology, with unprecedented sensitivity, angular and energy resolution, combined with remarkable polarimetric capability. Thanks to its performance in the MeV-GeV domain, substantially improving its predecessors, e-ASTROGAM will open a new window on the non-thermal Universe, making pioneering observations of the most powerful Galactic and extragalactic sources, elucidating the nature of their relativistic outflows and their effects on the surroundings. With a line sensitivity in the MeV energy range one to two orders of magnitude better than previous and current generation instruments, e-ASTROGAM will determine the origin of key isotopes fundamental for the understanding of supernova explosion and the chemical evolution of our Galaxy. The mission will be a major player of the multiwavelength, multimessenger time-domain astronomy of the 2030s, and provide unique data of significant interest to a broad astronomical community, complementary to powerful observatories such as LISA, LIGO, Virgo, KAGRA, the Einstein Telescope and the Cosmic Explorer, IceCube-Gen2 and KM3NeT, SKA, ALMA, JWST, E-ELT, LSST, Athena, and the Cherenkov Telescope Array.
  •  
5.
  • Hoxha, A., et al. (författare)
  • Identification of discrete epitopes of Ro52p200 and association with fetal cardiac conduction system manifestations in a rodent model
  • 2016
  • Ingår i: Clinical and Experimental Immunology. - : Wiley-Blackwell. - 0009-9104 .- 1365-2249. ; 186:3, s. 284-291
  • Tidskriftsartikel (refereegranskat)abstract
    • Congenital heart block (CHB) is a potentially lethal condition characterized by a third-degree atrioventricular block (AVB). Despite anti-Ro52 antibodies being detected in nearly 90% of mothers of affected children, CHB occurs in only 1-2% of anti-Ro/Sjogrens-syndrome-related antigen A (SSA) autoantibody-positive pregnancies. Maternal antibodies have been suggested to bind molecules crucial to fetal cardiac function; however, it remains unknown whether a single antibody profile associates with CHB or whether several specificities and cross-reactive targets exist. Here, we aimed to define further the reactivity profile of CHB-associated antibodies towards Ro52p200 (amino acid 200-239). We first analysed reactivity of a monoclonal anti-Ro52 antibody shown to induce AVB in rats (7.8C7) and of sera from anti-Ro52p200 antibody-positive mothers of children with CHB towards a panel of modified Ro52p200 peptides, and subsequently evaluated their potential to induce AVB in rats upon transfer during gestation. We observed that CHB maternal sera displayed a homogeneous reactivity profile targeting preferentially the C-terminal part of Ro52p200, in contrast to 7.8C7 that specifically bound the p200 N-terminal end. In particular, amino acid D233 appeared crucial to maternal antibody reactivity towards p200. Despite low to absent reactivity towards rat p200 and different binding profiles towards mutated rat peptides indicating recognition of different epitopes within Ro52p200, immunoglobulin (Ig)G purified from two mothers of children with CHB could induce AVB in rats. Our findings support the hypothesis that several fine antibody specificities and cross-targets may exist and contribute to CHB development in anti-Ro52 antibody-positive pregnancies.
  •  
6.
  •  
7.
  • Mofors, J, et al. (författare)
  • Comorbidity and long-term outcome in patients with congenital heart block and their siblings exposed to Ro/SSA autoantibodies in utero
  • 2019
  • Ingår i: Annals of the rheumatic diseases. - : BMJ. - 1468-2060 .- 0003-4967. ; 78:5, s. 696-703
  • Tidskriftsartikel (refereegranskat)abstract
    • Congenital heart block (CHB) may develop in fetuses of Ro/SSA autoantibody-positive women. Given the rarity of CHB, information on comorbidity and complications later in life is difficult to systematically collect for large groups of patients. We therefore used nation-wide healthcare registers to investigate comorbidity and outcomes in patients with CHB and their siblings.MethodsData from patients with CHB (n= 119) and their siblings (n= 128), all born to anti-Ro/SSA-positive mothers, and from matched healthy controls (n= 1,190) and their siblings (n= 1,071), were retrieved from the Swedish National Patient Register. Analyses were performed by Cox proportional hazard modelling.ResultsIndividuals with CHB had a significantly increased risk of cardiovascular comorbidity, with cardiomyopathy and/or heart failure observed in 20 (16.8%) patients versus 3 (0.3%) controls, yielding a HR of 70.0 (95% CI 20.8 to 235.4), and with a HR for cerebral infarction of 39.9 (95% CI 4.5 to 357.3). Patients with CHB also had a higher risk of infections. Pacemaker treatment was associated with a decreased risk of cerebral infarction but increased risks of cardiomyopathy/heart failure and infection. The risk of systemic connective tissue disorder was also increased in patients with CHB (HR 11.8, 95% CI 4.0 to 11.8), and both patients with CHB and their siblings had an increased risk to develop any of 15 common autoimmune conditions (HR 5.7, 95% CI 2.83 to 11.69 and 3.6, 95% CI 1.7 to 8.0, respectively).ConclusionsThe data indicate an increased risk of several cardiovascular, infectious and autoimmune diseases in patients with CHB, with the latter risk shared by their siblings.
  •  
8.
  • Wu, X., et al. (författare)
  • PANGU : A high resolution gamma-ray space telescope
  • 2015
  • Ingår i: Proceedings of the 11th Frascati Workshops on Multifrequency Behaviour of High Energy Cosmic Sources Workshop, MULTIF 2015. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • PANGU (the PAir-productioN Gamma-ray Unit) is a small astrophysics mission with wide field of view optimized for spectro-imaging, timing and polarisation studies. It will map the gamma-ray sky from 10 MeV to a few GeV with unprecedented spatial resolution. This window on the Universe is unique to detect photons emitted directly by relativistic particles, via the decay of neutral pions, or the annihilation or decay light from anti-matter and the putative light dark matter candidates. A wealth of questions can be probed among the most important themes of modern physics and astrophysics. The PANGU instrument is a pair-conversion gamma-ray telescope based on an innovative design of a silicon strip tracker. It is light, compact and accurate. It consists of 100 layers of silicon micro-strip detector of 40 x 40 cm2 in area, stacked to height of about 90 cm, and covered by a top anticoincidence detector. PANGU relies on multiple scattering effects for energy measurement, reaching an energy resolution between 30-50% for 10 MeV - 1 GeV. The novel tracker will allow the first polarisation measurement and provide the best angular resolution ever obtained in the soft gamma ray and GeV band. PANGU has been proposed to the recent ESA-CAS Call for Joint Small Science Mission. In this contribution, the key science objectives, the payload concept and the expected performance will be presented.
  •  
9.
  •  
10.
  • Brauner, Susanna, et al. (författare)
  • H1N1 vaccination in Sjogren's syndrome triggers polyclonal B cell activation and promotes autoantibody production
  • 2017
  • Ingår i: Annals of the Rheumatic Diseases. - : BMJ. - 0003-4967 .- 1468-2060. ; 76:10, s. 1755-1763
  • Tidskriftsartikel (refereegranskat)abstract
    • ObjectivesVaccination of patients with rheumatic disease has been reported to result in lower antibody titres than in healthy individuals. However, studies primarily include patients on immunosuppressive therapy. Here, we investigated the immune response of treatment-naive patients diagnosed with primary Sjogren's syndrome (pSS) to an H1N1 influenza vaccine.Methods Patients with Sjogren's syndrome without immunomodulatory treatment and age-matched and gender-matched healthy controls were immunised with an H1N1 influenza vaccine and monitored for serological and cellular immune responses. Clinical symptoms were monitored with a standardised form. IgG class switch and plasma cell differentiation were induced in vitro in purified naive B cells of untreated and hydroxychloroquine-treated patients and healthy controls. Gene expression was assessed by NanoString technology.ResultsSurprisingly, treatment-naive patients with Sjogren's syndrome developed higher H1N1 IgG titres of greater avidity than healthy controls on vaccination. Notably, off-target B cells were also triggered resulting in increased anti-EBV and autoantibody titres. Endosomal toll-like receptor activation of naive B cells in vitro revealed a greater propensity of patient-derived cells to differentiate into plasmablasts and higher production of class switched IgG. The amplified plasma cell differentiation and class switch could be induced in cells from healthy donors by preincubation with type 1 interferon, but was abolished in hydroxychloroquine-treated patients and after in vitro exposure of naive B cells to chloroquine.ConclusionsThis comprehensive analysis of the immune response in autoimmune patients to exogenous stimulation identifies a mechanistic basis for the B cell hyperactivity in Sjogren's syndrome, and suggests that caution is warranted when considering vaccination in non-treated autoimmune patients.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy