SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Anagnostaki Lola) srt2:(2015-2016)"

Sökning: WFRF:(Anagnostaki Lola) > (2015-2016)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Stanezai, S., et al. (författare)
  • Higher intensity of Low Molecular Weight Protein Tyrosine Phosphatase/ ACP-1 in survivors of patients diagnosed with Diffuse Large B Cell Lymphoma (DLBCL) compared to non-survivors
  • 2016
  • Ingår i: Austin Biology. - : Austin Publishing. ; 1:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Adult Diffuse Large B Cell Lymphoma (DLBCL) is a heterogeneous form of hematopoietic cancer and difficult to treat. In order to find a better diagnostic indication for the disease, we analyzed Low Molecular Weight Protein Tyrosine Phosphatase (LMWPTP) that in humans is encoded by the ACP1 gene. LMWPTP is an enzyme shown to counteract Protein Tyrosine Kinases (PTK) and was suggested to be a negative growth factor regulator. However, the 18 kDa PTP can also have a positive effect on cell growth and proliferation, indicating a controversial role in the tumorigenic process. LMWPTP exists in different isoforms which are electrophoretically, kinetically and immunologically distinct. We have studied two subgroups of DLBCL consisting of a Germinal Center B cell like (GCB) and a non-Germinal Center B cell like (non-GCB) group. The two subgroups have been defined by gene-expressing profiling and are associated with differential outcome. The expression levels of LMWPTP protein was compared and showed significant differences between the GCB and non- GCB subgroups (p=0.012). Interestingly, when the samples were divided into survivors and non-survivors, and thereafter analyzed for LMWPTP expression, the samples from patients with a higher survival rate showed increased staining intensity, whereas the samples from patients with lower intensity of LMWPTP did not survive the disease (p=0.001). In conclusion, we have shown that DLBCL patients with worse outcome express LMWPTP with a lower intensity, suggesting a tumor suppressor role for this form of the enzyme.
  •  
2.
  • Okroj, Marcin, et al. (författare)
  • Local expression of complement factor I in breast cancer cells correlates with poor survival and recurrence.
  • 2015
  • Ingår i: Cancer Immunology and Immunotherapy. - : Springer Science and Business Media LLC. - 1432-0851 .- 0340-7004. ; 64:4, s. 467-478
  • Tidskriftsartikel (refereegranskat)abstract
    • Tumor cells often evade killing by the complement system by overexpressing membrane-bound complement inhibitors. However, production of soluble complement inhibitors in cells other than hepatocytes was rarely reported. We screened several breast cancer cell lines for expression of soluble complement inhibitor, complement factor I (FI). We also analyzed local production of FI in tissue microarrays with tumors from 130 breast cancer patients by in situ hybridization and immunohistochemistry. We found expression of FI in breast adenocarcinoma cell line MDA-MB-468 and confirmed its functional activity. Expression of FI at mRNA and protein levels was also confirmed in tumor cells and tumor stroma, both in fibroblasts and infiltrating immune cells. Multivariate Cox regression analyses revealed that high expression of FI protein in tumor cells was correlated with significantly shorter cancer-specific survival (HR 2.8; 95 % CI 1.0-7.5; p = 0.048) and recurrence-free survival (HR 3.4; 95 % CI 1.5-7.4; p = 0.002). High FI expression was positively correlated with tumor size (p < 0.001), and Nottingham histological grade (p = 0.015) and associated with estrogen and progesterone receptor status (p = 0.03 and p = 0.009, respectively). Our data show that FI is expressed in breast cancer and is associated with unfavorable clinical outcome.
  •  
3.
  • Stanezai, Sanga, et al. (författare)
  • Higher intensity of low molecular weight protein tyrosine phosphatase/ ACP-1 in survivors of patients diagnosed with diffuse large B cell lymphoma (DLBCL) compared to non-survivors
  • 2016
  • Ingår i: Austin Biology. - : Austin Publishing. ; 1:2:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Adult diffuse large B cell lymphoma (DLBCL) is a heterogeneous form of hematopoietic cancer and difficult to treat. In order to find a better diagnostic indication for the disease, we analyzed low molecular weight protein tyrosine phosphatase (LMWPTP) that in humans is encoded by the ACP1 gene. LMWPTP is an enzyme shown to counteract protein tyrosine kinases (PTK) and was suggested to be a negative growth factor regulator. However, the 18 kDa PTP can also have a positive effect on cell growth and proliferation, indicating a controversial role in the tumorigenic process. LMWPTP exists in different isoforms which are electrophoretically, kinetically and immunologically distinct. We have studied two subgroups of DLBCL consisting of a germinal center B cell like (GCB) and a non-germinal center B cell like (non-GCB) group. The two subgroups have been defined by gene-expressing profiling and are associated with differential outcome. The expression levels of LMWPTP protein was compared and showed significant differences between the GCB and non-GCB subgroups (p=0.012). Interestingly, when the samples were divided into survivors and non-survivors, and thereafter analyzed for LMWPTP expression, the samples from patients with a higher survival rate showed increased staining intensity, whereas the samples from patients with lower intensity of LMWPTP did not survive the disease (p=0.001). In conclusion, we have shown that DLBCL patients with worse outcome express LMWPTP with a lower intensity, suggesting a tumor suppressor role for this form of the enzyme.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy