SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andersson Linda 1973) srt2:(2020-2024)"

Sökning: WFRF:(Andersson Linda 1973) > (2020-2024)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Björnson, Elias, 1988, et al. (författare)
  • Apolipoprotein B48 metabolism in chylomicrons and very low-density lipoproteins and its role in triglyceride transport in normo- and hypertriglyceridemic human subjects
  • 2020
  • Ingår i: Journal of Internal Medicine. - : Wiley. - 0954-6820 .- 1365-2796. ; 288:4, s. 422-438
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Renewed interest in triglyceride-rich lipoproteins as causative agents in cardiovascular disease mandates further exploration of the integrated metabolism of chylomicrons and very low-density lipoproteins (VLDL). Methods Novel tracer techniques and an integrated multi-compartmental model were used to determine the kinetics of apoB48- and apoB100-containing particles in the chylomicron and VLDL density intervals in 15 subjects with a wide range of plasma triglyceride levels. Results Following a fat-rich meal, apoB48 appeared in the chylomicron, VLDL1 and VLDL2 fractions in all subjects. Chylomicrons cleared rapidly from the circulation but apoB48-containing VLDL accumulated, and over the day were 3-fold higher in those with high versus low plasma triglyceride. ApoB48-containing particles were secreted directly into both the chylomicron and VLDL fractions at rates that were similar across the plasma triglyceride range studied. During fat absorption, whilst most triglyceride entered the circulation in chylomicrons, the majority of apoB48 particles were secreted into the VLDL density range. Conclusion The intestine secretes apoB48-containing particles not only as chylomicrons but also directly into the VLDL1 and VLDL2 density ranges both in the basal state and during dietary lipid absorption. Over the day, apoB48-containing particles appear to comprise about 20-25% of circulating VLDL and, especially in those with elevated triglycerides, form part of a slowly cleared 'remnant' particle population, thereby potentially increasing CHD risk. These findings provide a metabolic understanding of the potential consequences for increased CHD risk when slowed lipolysis leads to the accumulation of remnants, especially in individuals with hypertriglyceridemia.
  •  
2.
  • Taskinen, Marja-Riitta, et al. (författare)
  • Contribution of intestinal triglyceride-rich lipoproteins to residual atherosclerotic cardiovascular disease risk in individuals with type 2 diabetes on statin therapy
  • 2023
  • Ingår i: DIABETOLOGIA. - 0012-186X .- 1432-0428. ; 66:12, s. 2307-2319
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: This study explored the hypothesis that significant abnormalities in the metabolism of intestinally derived lipoproteins are present in individuals with type 2 diabetes on statin therapy. These abnormalities may contribute to residual CVD risk.Methods: To investigate the kinetics of ApoB-48- and ApoB-100-containing lipoproteins, we performed a secondary analysis of 11 overweight/obese individuals with type 2 diabetes who were treated with lifestyle counselling and on a stable dose of metformin who were from an earlier clinical study, and compared these with 11 control participants frequency-matched for age, BMI and sex. Participants in both groups were on a similar statin regimen during the study. Stable isotope tracers were used to determine the kinetics of the following in response to a standard fat-rich meal: (1) apolipoprotein (Apo)B-48 in chylomicrons and VLDL; (2) ApoB-100 in VLDL, intermediate-density lipoprotein (IDL) and LDL; and (3) triglyceride (TG) in VLDL.Results: The fasting lipid profile did not differ significantly between the two groups. Compared with control participants, in individuals with type 2 diabetes, chylomicron TG and ApoB-48 levels exhibited an approximately twofold higher response to the fat-rich meal, and a twofold higher increment was observed in ApoB-48 particles in the VLDL1 and VLDL2 density ranges (all p < 0.05). Again comparing control participants with individuals with type 2 diabetes, in the latter, total ApoB-48 production was 25% higher (556 +/- 57 vs 446 +/- 57 mg/day; p < 0.001), conversion (fractional transfer rate) of chylomicrons to VLDL was around 40% lower (35 +/- 25 vs 82 +/- 58 pools/day; p=0.034) and direct clearance of chylomicrons was 5.6-fold higher (5.6 +/- 2.2 vs 1.0 +/- 1.8 pools/day; p < 0.001). During the postprandial period, ApoB-48 particles accounted for a higher proportion of total VLDL in individuals with type 2 diabetes (44%) compared with control participants (25%), and these ApoB-48 VLDL particles exhibited a fivefold longer residence time in the circulation (p < 0.01). No between-group differences were seen in the kinetics of ApoB-100 and TG in VLDL, or in LDL ApoB-100 production, pool size and clearance rate. As compared with control participants, the IDL ApoB-100 pool in individuals with type 2 diabetes was higher due to increased conversion from VLDL2.Conclusions/interpretation: Abnormalities in the metabolism of intestinally derived ApoB-48-containing lipoproteins in individuals with type 2 diabetes on statins may help to explain the residual risk of CVD and may be suitable targets for interventions.
  •  
3.
  • Taskinen, M. R., et al. (författare)
  • Role of endogenous incretins in the regulation of postprandial lipoprotein metabolism
  • 2022
  • Ingår i: European Journal of Endocrinology. - : Oxford University Press (OUP). - 0804-4643 .- 1479-683X. ; 187:1, s. 75-84
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Incretins are known to influence lipid metabolism in the intestine when administered as pharmacologic agents. The aggregate influence of endogenous incretins on chylomicron production and clearance is less clear, particularly in light of opposing effects of co-secreted hormones. Here, we tested the hypothesis that physiological levels of incretins may impact on production or clearances rates of chylomicrons and VLDL. Design and methods: A group of 22 overweight/obese men was studied to determine associations between plasma levels of glucagon-like peptides 1 and 2 (GLP-1 and GLP-2) and glucose-dependent insulinotropic polypeptide (GIP) after a fat-rich meal and the production and clearance rates of apoB48- and apoB100-containing triglyceride-rich lipoproteins. Subjects were stratified by above- and below-median incretin response (area under the curve). Results: Stratification yielded subgroups that differed about two-fold in incretin response. There were neither differences in apoB48 production rates in chylomicrons or VLDL fractions nor in apoB100 or triglyceride kinetics in VLDL between men with above- vs below-median incretin responses. The men with above-median GLP-1 and GLP-2 responses exhibited higher postprandial plasma and chylomicron triglyceride levels, but this could not be related to altered kinetic parameters. No differences were found between incretin response subgroups and particle clearance rates. Conclusion: We found no evidence for a regulatory effect of endogenous incretins on contemporaneous chylomicron or VLDL metabolism following a standardised fat-rich meal. The actions of incretins at pharmacological doses may not be reflected at physiological levels of these hormones.
  •  
4.
  • Andersson, Linda, 1973, et al. (författare)
  • Glucosylceramide synthase deficiency in the heart compromises β1-adrenergic receptor trafficking
  • 2021
  • Ingår i: European Heart Journal. - : Oxford University Press. - 0195-668X .- 1522-9645. ; 42:43, s. 4481-4492
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS: Cardiac injury and remodelling are associated with the rearrangement of cardiac lipids. Glycosphingolipids are membrane lipids that are important for cellular structure and function, and cardiac dysfunction is a characteristic of rare monogenic diseases with defects in glycosphingolipid synthesis and turnover. However, it is not known how cardiac glycosphingolipids regulate cellular processes in the heart. The aim of this study is to determine the role of cardiac glycosphingolipids in heart function.METHODS AND RESULTS: Using human myocardial biopsies, we showed that the glycosphingolipids glucosylceramide and lactosylceramide are present at very low levels in non-ischaemic human heart with normal function and are elevated during remodelling. Similar results were observed in mouse models of cardiac remodelling. We also generated mice with cardiomyocyte-specific deficiency in Ugcg, the gene encoding glucosylceramide synthase (hUgcg-/- mice). In 9- to 10-week-old hUgcg-/- mice, contractile capacity in response to dobutamine stress was reduced. Older hUgcg-/- mice developed severe heart failure and left ventricular dilatation even under baseline conditions and died prematurely. Using RNA-seq and cell culture models, we showed defective endolysosomal retrograde trafficking and autophagy in Ugcg-deficient cardiomyocytes. We also showed that responsiveness to β-adrenergic stimulation was reduced in cardiomyocytes from hUgcg-/- mice and that Ugcg knockdown suppressed the internalization and trafficking of β1-adrenergic receptors.CONCLUSIONS: Our findings suggest that cardiac glycosphingolipids are required to maintain β-adrenergic signalling and contractile capacity in cardiomyocytes and to preserve normal heart function.
  •  
5.
  • Cinato, Mathieu, et al. (författare)
  • Cardiac Plin5 interacts with SERCA2 and promotes calcium handling and cardiomyocyte contractility
  • 2023
  • Ingår i: Life Science Alliance. - : Life Science Alliance, LLC. - 2575-1077. ; 6:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The adult heart develops hypertrophy to reduce ventricular wall stress and maintain cardiac function in response to an increased workload. Although pathological hypertrophy generally prog-resses to heart failure, physiological hypertrophy may be car-dioprotective. Cardiac-specific overexpression of the lipid-droplet protein perilipin 5 (Plin5) promotes cardiac hypertrophy, but it is unclear whether this response is beneficial. We analyzed RNA -sequencing data from human left ventricle and showed that car-diac PLIN5 expression correlates with up-regulation of cardiac contraction-related processes. To investigate how elevated cardiac Plin5 levels affect cardiac contractility, we generated mice with cardiac-specific overexpression of Plin5 (MHC-Plin5 mice). These mice displayed increased left ventricular mass and cardiomyocyte size but preserved heart function. Quantitative proteomics identified sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) as a Plin5-interacting protein. In situ proximity ligation assay further confirmed the Plin5/SERCA2 interaction. Live imaging showed in-creases in intracellular Ca2+ release during contraction, Ca2+ removal during relaxation, and SERCA2 function in MHC-Plin5 versus WT cardiomyocytes. These results identify a role of Plin5 in improving cardiac contractility through enhanced Ca2+ signaling.
  •  
6.
  • Cinato, Mathieu, et al. (författare)
  • Role of Perilipins in Oxidative Stress-Implications for Cardiovascular Disease
  • 2024
  • Ingår i: ANTIOXIDANTS. - 2076-3921. ; 13:2
  • Forskningsöversikt (refereegranskat)abstract
    • Oxidative stress is the imbalance between the production of reactive oxygen species (ROS) and antioxidants in a cell. In the heart, oxidative stress may deteriorate calcium handling, cause arrhythmia, and enhance maladaptive cardiac remodeling by the induction of hypertrophic and apoptotic signaling pathways. Consequently, dysregulated ROS production and oxidative stress have been implicated in numerous cardiac diseases, including heart failure, cardiac ischemia-reperfusion injury, cardiac hypertrophy, and diabetic cardiomyopathy. Lipid droplets (LDs) are conserved intracellular organelles that enable the safe and stable storage of neutral lipids within the cytosol. LDs are coated with proteins, perilipins (Plins) being one of the most abundant. In this review, we will discuss the interplay between oxidative stress and Plins. Indeed, LDs and Plins are increasingly being recognized for playing a critical role beyond energy metabolism and lipid handling. Numerous reports suggest that an essential purpose of LD biogenesis is to alleviate cellular stress, such as oxidative stress. Given the yet unmet suitability of ROS as targets for the intervention of cardiovascular disease, the endogenous antioxidant capacity of Plins may be beneficial.
  •  
7.
  • Laudette, Marion, et al. (författare)
  • Cardiomyocyte-specific PCSK9 deficiency compromises mitochondrial bioenergetics and heart function
  • 2023
  • Ingår i: Cardiovascular Research. - : Oxford University Press (OUP). - 0008-6363 .- 1755-3245. ; 119:7, s. 1537-1552
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims Pro-protein convertase subtilisin-kexin type 9 (PCSK9), which is expressed mainly in the liver and at low levels in the heart, regulates cholesterol levels by directing low-density lipoprotein receptors to degradation. Studies to determine the role of PCSK9 in the heart are complicated by the close link between cardiac function and systemic lipid metabolism. Here, we sought to elucidate the function of PCSK9 specifically in the heart by generating and analysing mice with cardiomyocyte-specific Pcsk9 deficiency (CMPcsk9−/− mice) and by silencing Pcsk9 acutely in a cell culture model of adult cardiomyocyte-like cells. Methods and results Mice with cardiomyocyte-specific deletion of Pcsk9 had reduced contractile capacity, impaired cardiac function, and left ventricular dilatation at 28 weeks of age and died prematurely. Transcriptomic analyses revealed alterations of signalling pathways linked to cardiomyopathy and energy metabolism in hearts from CM-Pcsk9−/− mice vs. wild-type littermates. In agreement, levels of genes and proteins involved in mitochondrial metabolism were reduced in CM-Pcsk9−/− hearts. By using a Seahorse flux analyser, we showed that mitochondrial but not glycolytic function was impaired in cardiomyocytes from CM-Pcsk9−/− mice. We further showed that assembly and activity of electron transport chain (ETC) complexes were altered in isolated mitochondria from CM-Pcsk9−/− mice. Circulating lipid levels were unchanged in CM-Pcsk9−/− mice, but the lipid composition of mitochondrial membranes was altered. In addition, cardiomyocytes from CM-Pcsk9−/− mice had an increased number of mitochondria–endoplasmic reticulum contacts and alterations in the morphology of cristae, the physical location of the ETC complexes. We also showed that acute Pcsk9 silencing in adult cardiomyocyte-like cells reduced the activity of ETC complexes and impaired mitochondrial metabolism. Conclusion PCSK9, despite its low expression in cardiomyocytes, contributes to cardiac metabolic function, and PCSK9 deficiency in cardiomyocytes is linked to cardiomyopathy, impaired heart function, and compromised energy production.
  •  
8.
  • Levin, Malin, 1973, et al. (författare)
  • Cardiomyocytes, sphingolipids and cardio myotoxicity
  • 2023
  • Ingår i: Current Opinion in Lipidology. - 0957-9672. ; 34:4, s. 180-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose of reviewSphingolipids are structurally diverse membrane lipids localized in lipid bilayers. Sphingolipids are not only important structural components of cellular membranes, but they are also important regulators of cellular trafficking and signal transduction and are implicated in several diseases. Here, we review the latest insights into sphingolipids and their role in cardiac function and cardiometabolic disease.Recent findingsThe underlying mechanisms linking sphingolipids to cardiac dysfunction are still not fully clarified. Sphingolipids, and in particular ceramides, have emerged as important players in lipotoxicity, mediating inflammation, impaired insulin signalling and apoptosis. In addition, recent findings highlight the importance of glycosphingolipid homeostasis in cardiomyocyte membranes, where they are required to maintain & beta;-adrenergic signalling and contractile capacity to preserve normal heart function. Thus, glycosphingolipid homeostasis in cardiac membranes characterizes a novel mechanism linking sphingolipids to cardiac disease.Modulation of cardiac sphingolipids may represent a promising therapeutic approach. Sustained investigation of the link between sphingolipids and cardiomyocyte function is therefore needed and we hope that this review may inspire researchers to further elucidate the action of these lipids.
  •  
9.
  • Svedlund Eriksson, Elin, et al. (författare)
  • Castration of Male Mice Induces Metabolic Remodeling of the Heart
  • 2022
  • Ingår i: Journal of the Endocrine Society. - : The Endocrine Society. - 2472-1972. ; 6:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Androgen deprivation therapy of prostate cancer, which suppresses serum testosterone to castrate levels, is associated with increased risk of heart failure. Here we tested the hypothesis that castration alters cardiac energy substrate uptake, which is tightly coupled to the regulation of cardiac structure and function. Short-term (3-4 weeks) surgical castration of male mice reduced the relative heart weight. While castration did not affect cardiac function in unstressed conditions, we observed reductions in heart rate, stroke volume, cardiac output, and cardiac index during pharmacological stress with dobutamine in castrated vs sham-operated mice. Experiments using radiolabeled lipoproteins and glucose showed that castration shifted energy substrate uptake in the heart from lipids toward glucose, while testosterone replacement had the opposite effect. There was increased expression of fetal genes in the heart of castrated mice, including a strong increase in messenger RNA and protein levels of beta-myosin heavy chain (MHC), the fetal isoform of MHC. In conclusion, castration of male mice induces metabolic remodeling and expression of the fetal gene program in the heart, in association with a reduced cardiac performance during pharmacological stress. These findings may be relevant for the selection of treatment strategies for heart failure in the setting of testosterone deficiency.
  •  
10.
  • Taskinen, Marja-Riitta, et al. (författare)
  • Effects of Evolocumab on the Postprandial Kinetics of Apo (Apolipoprotein) B100- and B48-Containing Lipoproteins in Subjects With Type 2 Diabetes.
  • 2021
  • Ingår i: Arteriosclerosis, thrombosis, and vascular biology. - 1524-4636.
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased risk of atherosclerotic cardiovascular disease in subjects with type 2 diabetes is linked to elevated levels of triglyceride-rich lipoproteins and their remnants. The metabolic effects of PCSK9 (proprotein convertase subtilisin/kexin 9) inhibitors on this dyslipidemia were investigated using stable-isotope-labeled tracers. Approach and Results: Triglyceride transport and the metabolism of apos (apolipoproteins) B48, B100, C-III, and E after a fat-rich meal were investigated before and on evolocumab treatment in 13 subjects with type 2 diabetes. Kinetic parameters were determined for the following: apoB48 in chylomicrons; triglyceride in VLDL1 (very low-density lipoprotein) and VLDL2; and apoB100 in VLDL1, VLDL2, IDL (intermediate-density lipoprotein), and LDL (low-density lipoprotein). Evolocumab did not alter the kinetics of apoB48 in chylomicrons or apoB100 or triglyceride in VLDL1. In contrast, the fractional catabolic rates of VLDL2-apoB100 and VLDL2-triglyceride were both increased by about 45%, which led to a 28% fall in the VLDL2 plasma level. LDL-apoB100 was markedly reduced by evolocumab, which was linked to metabolic heterogeneity in this fraction. Evolocumab increased clearance of the more rapidly metabolized LDL by 61% and decreased production of the more slowly cleared LDL by 75%. ApoC-III kinetics were not altered by evolocumab, but the apoE fractional catabolic rates increased by 45% and the apoE plasma level fell by 33%. The apoE fractional catabolic rates was associated with the decrease in VLDL2- and IDL-apoB100 concentrations.Evolocumab had only minor effects on lipoproteins that are involved in triglyceride transport (chylomicrons and VLDL1) but, in contrast, had a profound impact on lipoproteins that carry cholesterol (VLDL2, IDL, LDL). Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02948777.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19
Typ av publikation
tidskriftsartikel (14)
konferensbidrag (3)
forskningsöversikt (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (19)
Författare/redaktör
Andersson, Linda, 19 ... (13)
Borén, Jan, 1963 (12)
Adiels, Martin, 1976 (8)
Björnson, Elias, 198 ... (7)
Levin, Malin, 1973 (6)
Taskinen, M. R. (5)
visa fler...
Soderlund, S (5)
Matikainen, N. (5)
Hakkarainen, A. (5)
Thorsell, Annika, 19 ... (5)
Lundbom, N. (4)
Andersson, Annika, 1 ... (4)
Fälth, Linda, 1973- (4)
Sihlbom, Carina, 197 ... (3)
Mardinoglu, Adil (2)
Arif, Muhammad (2)
Taskinen, Marja-Riit ... (2)
Matikainen, Niina (2)
Kahri, J. (2)
Omerovic, Elmir, 196 ... (2)
Hyötyläinen, Tuulia, ... (2)
Orešič, Matej, 1967- (2)
Levin, Max, 1969 (2)
Bollano, Entela, 197 ... (2)
Mardani, Ismena (2)
Klevstig, Martina (2)
Zhou, H. (1)
Hallgren, Jenny (1)
Petzold, Max, 1973 (1)
Lindmark, Ulrika, 19 ... (1)
Packard, C. (1)
Söderlund, Sanni (1)
Swärd, Karl (1)
Hartmann, B. (1)
Jeppsson, Anders, 19 ... (1)
Parini, P (1)
Holst, J J (1)
Deacon, C. F. (1)
Ståhlman, Marcus, 19 ... (1)
Laakso, M. (1)
Romeo, Stefano, 1976 (1)
Åhlström, Linda (1)
Andersson-Gäre, Boel (1)
Sinisalu, Lisanna, 1 ... (1)
Ripatti, S (1)
Erichsen Andersson, ... (1)
Grant, P (1)
Perkins, Rosie, 1965 (1)
Drevinge, Christina, ... (1)
Fogelstrand, Per, 19 ... (1)
visa färre...
Lärosäte
Göteborgs universitet (14)
Linnéuniversitetet (4)
Karolinska Institutet (3)
Kungliga Tekniska Högskolan (2)
Örebro universitet (2)
Jönköping University (1)
visa fler...
Högskolan i Skövde (1)
RISE (1)
Karlstads universitet (1)
visa färre...
Språk
Engelska (18)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (14)
Samhällsvetenskap (4)
Humaniora (4)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy