SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andersson Micael) srt2:(2015-2019)"

Sökning: WFRF:(Andersson Micael) > (2015-2019)

  • Resultat 1-10 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Berginström, Nils, 1984-, et al. (författare)
  • Fatigue after traumatic brain injury is linked to altered striato-thalamic-cortical functioning
  • 2017
  • Ingår i: Brain Injury. - : Taylor & Francis. - 0269-9052 .- 1362-301X. ; 31:6-7, s. 755-755
  • Tidskriftsartikel (refereegranskat)abstract
    • Mental fatigue is a common symptom in the chronic phase of traumatic brain injury. Despite its high prevalence, no treatmentis available for this disabling symptom, and the mechanisms underlying fatigue are poorly understood. Some studies have suggested that fatigue in traumatic brain injury and other neurological disorders might reflect dysfunction within striato-thalamic-cortical loops. In the present study, we investigated whether functional magnetic resonance imaging(fMRI) can be used to detect chronic fatigue after traumatic brain injury (TBI), with emphasis on the striato-thalamic cortical-loops. We included patients who had suffered traumatic brain injury (n = 57, age range 20–64 years) and experienced mental fatigue > 1 year post injury (mean = 8.79 years, SD = 7.35), and age- and sex-matched healthycontrols (n = 27, age range 25–65 years). All participants completed self-assessment scales of fatigue and other symptoms, underwent an extensive neuropsychological test battery and performed a fatiguing 27-minute attention task (the modified Symbol Digit Modalities Test) during fMRI. Accuracy did not differ between groups, but reaction times were slower in the traumatic brain injury group (p < 0.001). Patients showed a greater increase in fatigue than controls from before to after task completion (p < 0.001). Patients showed less fMRI blood oxygen level–dependent activity in several a priori hypothesized regions (family-wise error corrected,p < 0.05), including the bilateral caudate, thalamus and anterior insula. Using the left caudate as a region of interest and testing for sensitivity and specificity, we identified 91% of patients and 81% of controls. As expected, controls showed decreased activation over time in regions of interest—the bilateral caudate and anterior thalamus (p < 0.002, uncorrected)—whereas patients showed no corresponding activity decrease. These results suggest that chronic fatigue after TBI is linked to altered striato-thalamic-cortical functioning. The high precision of fMRI for the detection of fatigue is of great clinical interest, given the lack of objective measures for the diagnosis of fatigue.
  •  
3.
  • Berginström, Nils, et al. (författare)
  • Using Functional Magnetic Resonance Imaging to Detect Chronic Fatigue in Patients With Previous Traumatic Brain Injury : changes linked to altered Striato-Thalamic-Cortical Functioning
  • 2018
  • Ingår i: The journal of head trauma rehabilitation. - : Wolters Kluwer. - 0885-9701 .- 1550-509X. ; 33:4, s. 266-274
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: To investigate whether functional magnetic resonance imaging (fMRI) can be used to detect fatigue after traumatic brain injury (TBI).Setting: Neurorehabilitation clinic.Participants: Patients with TBI (n = 57) and self-experienced fatigue more than 1 year postinjury, and age- and gender-matched healthy controls (n = 27).Main Measures: Self-assessment scales of fatigue, a neuropsychological test battery, and fMRI scanning during performance of a fatiguing 27-minute attention task.Results: During testing within the fMRI scanner, patients showed a higher increase in self-reported fatigue than controls from before to after completing the task (P < .001).The patients also showed lower activity in several regions, including bilateral caudate, thalamus, and anterior insula (all P < .05). Furthermore, the patients failed to display decreased activation over time in regions of interest: the bilateral caudate and anterior thalamus (all P < .01). Left caudate activity correctly identified 91% of patients and 81% of controls, resulting in a positive predictive value of 91%.Conclusion: The results suggest that chronic fatigue after TBI is associated with altered striato-thalamic-cortical functioning. It would be of interest to study whether fMRI can be used to support the diagnosis of chronic fatigue in future studies.
  •  
4.
  • Bäckman, Lars, et al. (författare)
  • Increased dopamine release after working-memory updating training : Neurochemical correlates of transfer
  • 2017
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous work demonstrates that working-memory (WM) updating training results in improved performance on a letter-memory criterion task, transfers to an untrained n-back task, and increases striatal dopamine (DA) activity during the criterion task. Here, we sought to replicate and extend these findings by also examining neurochemical correlates of transfer. Four positron emission tomography (PET) scans using the radioligand raclopride were performed. Two of these assessed DAD2 binding (letter memory; n-back) before 5 weeks of updating training, and the same two scans were performed post training. Key findings were (a) pronounced training-related behavioral gains in the lettermemory criterion task, (b) altered striatal DAD2 binding potential after training during letter-memory performance, suggesting training-induced increases in DA release, and (c) increased striatal DA activity also during the n-back transfer task after the intervention, but no concomitant behavioral transfer. The fact that the training-related DA alterations during the transfer task were not accompanied by behavioral transfer suggests that increased DA release may be a necessary, but not sufficient, condition for behavioral transfer to occur.
  •  
5.
  •  
6.
  • Hibar, Derrek P., et al. (författare)
  • Novel genetic loci associated with hippocampal volume
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r(g) = -0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.
  •  
7.
  • Jonsson, Micael, et al. (författare)
  • High-speed imaging reveals how antihistamine exposure affects escape behaviours in aquatic insect prey
  • 2019
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 648, s. 1257-1262
  • Tidskriftsartikel (refereegranskat)abstract
    • Aquatic systems receive a wide range of pharmaceuticals that may have adverse impacts on aquatic wildlife. Among these pharmaceuticals, antihistamines are commonly found, and these substances have the potential to influence the physiology of aquatic invertebrates. Previous studies have focused on how antihistamines may affect behaviours of aquatic invertebrates, but these studies probably do not capture the full consequences of antihistamine exposure, as traditional recording techniques do not capture important animal movements occurring at the scale of milliseconds, such as prey escape responses. In this study, we investigated if antihistamine exposure can impact escape responses in aquatic insect, by exposing damselfly (Coenagrion hastulatum) larvae to two environmentally relevant concentrations (0.1 and 1 μg L−1) of diphenhydramine. Importantly, we used a high-speed imaging approach that with high-time resolution captures details of escape responses and, thus, potential impacts of diphenhydramine on these behaviours. Our results show overall weak effects of antihistamine exposure on the escape behaviours of damselfly larvae. However, at stage 2 of the C-escape response, we found a significant increase in turning angle, which corresponds to a reduced swimming velocity, indicating a reduced success at evading a predator attack. Thus, we show that low concentrations of an antihistamine may affect behaviours strongly related to fitness of aquatic insect prey – effects would have been overlooked using traditional recording techniques. Hence, to understand the full consequences of pharmaceutical contamination on aquatic wildlife, high-speed imaging should be incorporated into future environmental risk assessments.
  •  
8.
  • Karalija, Nina, 1984-, et al. (författare)
  • C957T-mediated Variation in Ligand Affinity Affects the Association between C-11-raclopride Binding Potential and Cognition
  • 2019
  • Ingår i: Journal of cognitive neuroscience. - : MIT Press. - 0898-929X .- 1530-8898. ; 31:2, s. 314-325
  • Tidskriftsartikel (refereegranskat)abstract
    • The dopamine (DA) system plays an important role in cognition. Accordingly, normal variation in DA genes has been found to predict individual differences in cognitive performance. However, little is known of the impact of genetic differences on the link between empirical indicators of the DA system and cognition in humans. The present work used PET with C-11-raclopride to assess DA D2-receptor binding potential (BP) and links to episodic memory, working memory, and perceptual speed in 179 healthy adults aged 64-68 years. Previously, the T-allele of a DA D2-receptor single-nucleotide polymorphism, C957T, was associated with increased apparent affinity of C-11-raclopride, giving rise to higher BP values despite similar receptor density values between allelic groups. Consequently, we hypothesized that C-11-raclopride BP measures inflated by affinity rather than D2-receptor density in T-allele carriers would not be predictive of DA integrity and therefore prevent finding an association between C-11-raclopride BP and cognitive performance. In accordance with previous findings, we show that C-11-raclopride BP was increased in T-homozygotes. Importantly, C-11-raclopride BP was only associated with cognitive performance in groups with low or average ligand affinity (C-allele carriers of C957T, n = 124), but not in the high-affinity group (T-homozygotes, n = 55). The strongest C-11-raclopride BP-cognition associations and the highest level of performance were found in C-homozygotes. These findings show that genetic differences modulate the link between BP and cognition and thus have important implications for the interpretation of DA assessments with PET and C-11-raclopride in multiple disciplines ranging from cognitive neuroscience to psychiatry and neurology.
  •  
9.
  • Karalija, Nina, 1984-, et al. (författare)
  • Cardiovascular factors are related to dopamine integrity and cognition in aging
  • 2019
  • Ingår i: Annals of Clinical and Translational Neurology. - : Wiley-Blackwell. - 2328-9503. ; 6:11, s. 2291-2303
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The aging brain undergoes several changes, including reduced vascular, structural, and dopamine (DA) system integrity. Such brain changes have been associated with age‐related cognitive deficits. However, their relative importance, interrelations, and links to risk factors remain elusive.Methods: The present work used magnetic resonance imaging and positron emission tomography with 11C‐raclopride to jointly examine vascular parameters (white‐matter lesions and perfusion), DA D2‐receptor availability, brain structure, and cognitive performance in healthy older adults (n = 181, age: 64–68 years) from the Cognition, Brain, and Aging (COBRA) study.Results: Covariance was found among several brain indicators, where top predictors of cognitive performance included caudate and hippocampal integrity (D2DR availability and volumes), and cortical blood flow and regional volumes. White‐matter lesion burden was negatively correlated with caudate DA D2‐receptor availability and white‐matter microstructure. Compared to individuals with smaller lesions, individuals with confluent lesions (exceeding 20 mm in diameter) had reductions in cortical and hippocampal perfusion, striatal and hippocampal D2‐receptor availability, white‐matter microstructure, and reduced performance on tests of episodic memory, sequence learning, and processing speed. Higher cardiovascular risk as assessed by treatment for hypertension, systolic blood pressure, overweight, and smoking was associated with lower frontal cortical perfusion, lower putaminal D2DR availability, smaller grey‐matter volumes, a larger number of white‐matter lesions, and lower episodic memory performance.Interpretation: Taken together, these findings suggest that reduced cardiovascular health is associated with poorer status for brain variables that are central to age‐sensitive cognitive functions, with emphasis on DA integrity.
  •  
10.
  • Karlsson Wirebring, Linnea, et al. (författare)
  • Lesser neural pattern similarity across repeated tests is associated with better long-term memory retention
  • 2015
  • Ingår i: Journal of Neuroscience. - : Society for Neuroscience. - 0270-6474 .- 1529-2401. ; 35:26, s. 9595-9602
  • Tidskriftsartikel (refereegranskat)abstract
    • Encoding and retrieval processes enhance long-term memory performance. The efficiency of encoding processes has recently been linked to representational consistency: the reactivation of a representation that gets more specific each time an item is further studied. Here we examined the complementary hypothesis of whether the efficiency of retrieval processes also is linked to representational consistency. Alternatively, recurrent retrieval might foster representational variability—the altering or adding of underlying memory representa- tions. Human participants studied 60 Swahili–Swedish word pairs before being scanned with fMRI the same day and 1 week later. On Day 1, participants were tested three times on each word pair, and on Day 7 each pair was tested once. A BOLD signal change in right superior parietal cortex was associated with subsequent memory on Day 1 and with successful long-term retention on Day 7. A representational similarity analysis in this parietal region revealed that beneficial recurrent retrieval was associated with representational variability, such that the pattern similarity on Day 1 was lower for retrieved words subsequently remembered compared with those subsequently forgot- ten. This was mirrored by a monotonically decreased BOLD signal change in dorsolateral prefrontal cortex on Day 1 as a function of repeated successful retrieval for words subsequently remembered, but not for words subsequently forgotten. This reduction in prefrontal response could reflect reduced demands on cognitive control. Collectively, the results offer novel insights into why memory retention benefits from repeated retrieval, and they suggest fundamental differences between repeated study and repeated testing. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy