SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Andersson Sundén Erik) srt2:(2015-2019)"

Sökning: WFRF:(Andersson Sundén Erik) > (2015-2019)

  • Resultat 1-10 av 388
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bombarda, F., et al. (författare)
  • Runaway electron beam control
  • 2019
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 61:1
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:9
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:1
  • Forskningsöversikt (refereegranskat)
  •  
4.
  • Andersson, Peter, 1981-, et al. (författare)
  • Neutron Tomography Using Mobile Neutron Generators for Assessment of Void Distributions in Thermal Hydraulic Test Loops
  • 2015
  • Konferensbidrag (refereegranskat)abstract
    • Detailed knowledge of the lateral distribution of steam (void) and water in a nuclear fuel assembly is of great value for nuclear reactor operators and fuel manufacturers, with consequences for both reactor safety and economy of operation. Therefore, nuclear relevant two-phase flows are being studied at dedicated thermal-hydraulic test loop, using twophase flow systems ranging from simplified geometries such as heated circular pipes to full scale mock-ups of nuclear fuel assemblies. Neutron tomography (NT) has been suggested for assessment of the lateral distribution of steam and water in such test loops, motivated by a good ability of neutrons to penetrate the metallic structures of metal pipes and nuclear fuel rod mock-ups, as compared to e. g. conventional X-rays, while the liquid water simultaneously gives comparatively good contrast. However, these stationary test loops require the measurement setup to be mobile, which is often not the case for NT setups. Here, it is acknowledged that fast neutrons of 14 MeV from mobile neutron generators constitute a viable option for a mobile NT system. We present details of the development of neutron tomography for this purpose at the division of Applied Nuclear Physics at Uppsala University. Our concept contains a portable neutron generator, exploiting the fusion reaction of deuterium and tritium, and a detector with plastic scintillator elements designed to achieve adequate spatial and energy resolution, all mounted in a light-weight frame without collimators or bulky moderation to allow for a mobile instrument that can be moved about the stationary thermal hydraulic test sections. The detector system stores event-to-event pulse-height information to allow for discrimination based on the energy deposition in the scintillator elements. Experimental results from the tomographic assessment of axially symmetric test objects are shown, as well as simulation results from a scaled up version of the instrument for nonsymmetrical objects in quarter fuel-bundle size objects. In conclusion, the application of tomography on inch-wide vertical pipes has been experimentally demonstrated and simulation results indicate that tomography of the void distribution in nonsymmetrical vertical flows in quarter BWR fuel bundles is also feasible.
  •  
5.
  •  
6.
  • Branger, Erik, 1988-, et al. (författare)
  • Comparison of prediction models for Cherenkov light emissions from nuclear fuel assemblies
  • 2017
  • Ingår i: Journal of Instrumentation. - 1748-0221 .- 1748-0221. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • The Digital Cherenkov Viewing Device (DCVD) is a tool used by nuclear safeguards inspectors to verify irradiated nuclear fuel assemblies in wet storage based on the Cherenkov light produced by the assembly. Verification that no rods have been substituted in the fuel, so-called partial-defect verification, is made by comparing the intensity measured with a DCVD with a predicted intensity, based on operator fuel declaration. The prediction model currently used by inspectors is based on simulations of Cherenkov light production in a BWR 8x8 geometry. This work investigates prediction models based on simulated Cherenkov light production in a BWR 8x8 and a PWR 17x17 assembly, as well as a simplified model based on a single rod in water. Cherenkov light caused by both fission product gamma and beta decays were considered.The simulations reveal that there are systematic differences between the models, most noticeably with respect to the fuel assembly cooling time. Consequently, a prediction model that is based on another fuel assembly configuration than the fuel type being measured, will result in systematic over or underestimation of short-cooled fuel as opposed to long-cooled fuel. While a simplified model may be accurate enough for fuel assemblies with fairly homogeneous cooling times, the prediction models may differ by up to 18 \,\% for more heterogeneous fuel. Accordingly, these investigations indicate that the currently used model may need to be exchanged with a set of more detailed, fuel-type specific models, in order minimize the model dependant systematic deviations.
  •  
7.
  • Branger, Erik, 1988-, et al. (författare)
  • Investigating the Cherenkov light production due to cross-talk in closely stored nuclear fuel assemblies in wet storage
  • 2018
  • Ingår i: ESARDA Bulletin. - : European Commission Joint Research Centre. - 1977-5296. ; :57, s. 66-74
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The Digital Cherenkov Viewing Device (DCVD) is one of the tools available to a safeguards inspector performing verifications of irradiated nuclear fuel assemblies in wet storage. One of the main advantages of safeguards verification using Cherenkov light is that it can be performed without moving the fuel assemblies to an isolated measurement position, allowing for quick measurements. One disadvantage of this procedure is that irradiated nuclear fuel assemblies are often stored close to each other, and consequently gamma radiation from one assembly can enter a neighbouring assembly, and produce Cherenkov light in the neighbour. As a result, the measured Cherenkov light intensity of one assembly will include contributions from its neighbours, which may affect the safeguards conclusions drawn.In this paper, this so-called near-neighbour effect, is investigated and quantified through simulation. The simulations show that for two fuel assemblies with similar properties stored closely, the near-neighbour effect can cause a Cherenkov light intensity increase of up to 3% in a measurement. For one fuel assembly surrounded by identical neighbour assemblies, a total of up to 14% of the measured intensity may emanate from the neighbours. The relative contribution from the near-neighbour effect also depends on the fuel properties; for a long-cooled, low-burnup assembly, with low gamma and Cherenkov light emission, surrounded by short-cooled, high-burnup assemblies with high emission, the measured Cherenkov light intensity may be dominated by the contributions from its neighbours.When the DCVD is used for partial-defect verification, a 50% defect must be confidently detected. Previous studies have shown that a 50% defect will reduce the measured Cherenkov light intensity by 30% or more, and thus a threshold has been defined, where a ≥30% decrease in Cherenkov light indicates a partial defect. However, this work shows that the near-neighbour effect may also influence the measured intensity, calling either for a lowering of this threshold or for the intensity contributions from neighbouring assemblies to be corrected for. In this work, a method is proposed for assessing the near-neighbour effect based on declared fuel parameters, enabling the latter type of corrections.
  •  
8.
  • Branger, Erik, 1988-, et al. (författare)
  • On Cherenkov light production by irradiated nuclear fuel rods
  • 2017
  • Ingår i: Journal of Instrumentation. - 1748-0221 .- 1748-0221. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Safeguards verification of irradiated nuclear fuel assemblies in wet storage is frequently done by measuring the Cherenkov light in the surrounding water produced due to radioactive decays of fission products in the fuel. This paper accounts for the physical processes behind the Cherenkov light production caused by a single fuel rod in wet storage, and simulations are presented that investigate to what extent various properties of the rod affect the Cherenkov light production. The results show that the fuel properties has a noticeable effect on the Cherenkov light production, and thus that the prediction models for Cherenkov light production which are used in the safeguards verifications could potentially be improved by considering these properties.It is concluded that the dominating source of the Cherenkov light is gamma-ray interactions with electrons in the surrounding water. Electrons created from beta decay may also exit the fuel and produce Cherenkov light, and e.g. Y-90 was identified as a possible contributor to significant levels of the measurable Cherenkov light in long-cooled fuel. The results also show that the cylindrical, elongated fuel rod geometry results in a non-isotropic Cherenkov light production, and the light component parallel to the rod's axis exhibits a dependence on gamma-ray energy that differs from the total intensity, which is of importance since the typical safeguards measurement situation observes the vertical light component. It is also concluded that the radial distributions of the radiation sources in a fuel rod will affect the Cherenkov light production.
  •  
9.
  • Overview of the JET results
  • 2015
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 55:10
  • Tidskriftsartikel (refereegranskat)
  •  
10.
  • Aho-Mantila, L., et al. (författare)
  • Assessment of SOLPS5.0 divertor solutions with drifts and currents against L-mode experiments in ASDEX Upgrade and JET
  • 2017
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP PUBLISHING LTD. - 0741-3335 .- 1361-6587. ; 59:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The divertor solutions obtained with the plasma edge modelling tool SOLPS5.0 are discussed. The code results are benchmarked against carefully analysed L-mode discharges at various density levels with and without impurity seeding in the full-metal tokamaks ASDEX Upgrade and JET. The role of the cross-field drifts and currents in the solutions is analysed in detail, and the improvements achieved by fully activating the drift and current terms in view of matching the experimental signals are addressed. The persisting discrepancies are also discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 388
Typ av publikation
tidskriftsartikel (376)
konferensbidrag (6)
forskningsöversikt (6)
Typ av innehåll
refereegranskat (385)
övrigt vetenskapligt/konstnärligt (2)
populärvet., debatt m.m. (1)
Författare/redaktör
Andersson Sundén, Er ... (388)
Conroy, Sean (374)
Hjalmarsson, Anders (374)
Ericsson, Göran (371)
Zychor, I (369)
Cecconello, Marco (368)
visa fler...
Eriksson, Jacob, Dr, ... (367)
Possnert, Göran, 195 ... (367)
Weiszflog, Matthias (366)
Sjöstrand, Henrik, 1 ... (365)
Hellesen, Carl, 1980 ... (322)
Skiba, Mateusz, 1985 ... (319)
Binda, Federico, 198 ... (315)
Rubel, Marek (314)
Frassinetti, Lorenzo (309)
Bykov, Igor (288)
Weckmann, Armin (288)
Hellsten, Torbjörn (287)
Ström, Petter (287)
Petersson, Per (286)
Dzysiuk, Nataliia (279)
Menmuir, Sheena (277)
Bergsåker, Henric (255)
Rachlew, Elisabeth, ... (255)
Johnson, Thomas (194)
Tholerus, Emmi (182)
Stefanikova, Estera (148)
Garcia-Carrasco, Alv ... (147)
Garcia Carrasco, Alv ... (143)
Elevant, Thomas (141)
Ivanova, Darya (141)
Asp, E (130)
Ratynskaia, Svetlana (123)
Olivares, Pablo Vall ... (123)
Tolias, Panagiotis (120)
Zhou, Yushun (90)
Dzysiuk, N. (65)
Zhou, Yushan (55)
Hellesen, C (47)
Heinola, K (42)
Brezinsek, S (34)
Likonen, J (34)
Rachlew, Elisabeth (34)
Matthews, G. F. (33)
Delabie, E (32)
de la Luna, E (31)
Giroud, C (31)
Zoletnik, S (31)
Coad, J. P. (31)
Alves, E (31)
visa färre...
Lärosäte
Uppsala universitet (388)
Kungliga Tekniska Högskolan (354)
Chalmers tekniska högskola (30)
Språk
Engelska (388)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (387)
Teknik (17)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy