SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(André Hampus 1989) srt2:(2018)"

Sökning: WFRF:(André Hampus 1989) > (2018)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • André, Hampus, 1989, et al. (författare)
  • Effects on metal resource use from reusing laptops - A comparison of impact assessment methods
  • 2018
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Proposed measures of the circular economy are assumed to be environmentally favourable but there is limited empirical evidence on how this actually works in practice or if it is true. A life cycle-based approach has been argued useful for critical assessment of circular economy measures. In life cycle assessment, several perceptions exist regarding what the environmental problem with metal resource use consists of, manifesting in differing impact assessment methods. Since these methods have been shown to give diverging results it is plausible that the choice of LCIA-method could have significant implications for the assessment of circular economy for products such as laptops. Except for recycling, there are no comparative assessment studies of circular economy measures that deploy complementary LCIA-methods on metal resource use. A life cycle assessment was conducted studying reuse as mediated by a resale and refurbishment company, using several LCIA-methods in parallel. This served to find which metals that are important in laptops depending on LCIA-method and how metals may benefit from reuse. Second-hand laptops were deemed functionally equivalent to new ones. Reuse was assumed to double product lifetime of 70% of sourced laptops to six years in total. In EoL, recycled metals were assumed to displace respective primary production. The LCA study shows that reuse of laptops contributed to resource-efficiency in two principal ways: firstly, through the intended use extension (41% reduction compared to new laptops) and secondly, by steering material flows, i.e. laptops that cannot be reused, into recycling. This increased recycling was found especially important according to some LCIA-methods (varying between 1-9% reduction compared to new laptops) which characterise metals that are functionally recycled as important (typically methods using average crustal concentrations as part of their characterisation factors) and negligible in others (typically using reserves as part of their characterisation factors). Some metals have visible contributions in all methods and are unlikely missed if only using one LCIA-method. Other metals are visibly contributing in one or a few methods and thereby risk getting missed in such cases. It is therefore advisable to use complementary methods to minimise risks of overlooking relevant metal resource use aspects when studying circular economy measures for electronics.
  •  
2.
  • André, Hampus, 1989 (författare)
  • Resource and Environmental Impacts of Resource-Efficiency Measures Applied to Electronic Products
  • 2018
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Natural resources such as ecosystems, land, water and metals underpin the functioning of economies and human well-being, and are becoming increasingly scarce due to growth in population and affluence. Metals are increasingly demanded for their specific properties as modern technology develops. The dependence on metals is of growing concern due to the environmental impacts related, for example, to energy use and local impacts from mining, as well as the scarcity risks posed by socio-economic, geological and geopolitical constraints. Thus, there is a clear need to use metals and other natural resources more efficiently. The vision of a circular economy has been proposed as a way to do this, for example by improving durability, reusing, repairing and recycling. Such so-called resource-efficiency (RE) measures are commonly assumed to be environmentally beneficial, although the evidence is not plentiful. It is plausible that focusing on recirculating products and materials could shift burdens to other environmental impacts or life cycle stages. It has therefore been argued that a life cycle-based approach, such as in life cycle assessment (LCA), is useful to critically assess the environmental implications of RE measures. LCA aims to quantify the environmental impacts of products over their entire life cycles - from cradle to grave - assessing a wide range of impacts such as toxicity, climate change and metal resource use. For metal resource use, however, there are a number of perspectives as to what constitutes the actual environmental problem. These perspectives are represented in a variety of life cycle impact assessment methods (LCIA) which have previously been shown to give diverging results. Electronic products are emblematic of metal resource use challenges since they deploy a broad spectrum of scarce metals. This thesis aims to provide knowledge on the potential for RE measures to reduce the environmental impacts of electronic products, by addressing the following research questions: (1) What resource-efficiency measures result in reduced potential environmental impacts and resource use – for what types of products and under what conditions? (2) How does extended use of electronic products through design for increased technical lifetime, reuse and repair affect environmental impacts, particularly metal resource use? (3) How does the application of different LCIA methods for metal resource use influence interpretations of resource-efficiency measures applied to electronic products? This thesis builds on three appended papers which are all based on comparative assessments of resource efficiency, studied as resource use and environmental impacts per function delivered, using LCA and material flow analysis. The results indicate that extended use of electronic products through increasing technical lifetimes, reusing and repairing, is generally resource-efficient. Exceptions may occur, however, if extended use is insufficient to motivate impacts from producing more durable products or spare parts. Use extension of electronic products leads to resource efficiency in two distinct ways: through the intended use extension and by increasingly steering material flows into recycling. Further resource efficiency could be realised by combining RE measures over the entire life cycles of products. With regards to metal resource use, the choice of LCIA method can influence the interpretation of the results of RE measures for electronic products. Therefore, it is advisable to use several complementary LCIA methods to minimise the risks of overlooking potentially important resources issues. Furthermore, better understanding and transparency of such issues is valuable in order to provide more comprehensive information to decision-makers.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2
Typ av publikation
konferensbidrag (1)
licentiatavhandling (1)
Typ av innehåll
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
André, Hampus, 1989 (2)
Nordelöf, Anders, 19 ... (1)
Ljunggren Söderman, ... (1)
Lärosäte
Chalmers tekniska högskola (2)
Språk
Engelska (2)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (2)
Teknik (1)
År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy