SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Anthony Aletras H.) srt2:(2016)"

Sökning: WFRF:(Anthony Aletras H.) > (2016)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nordlund, David, et al. (författare)
  • Multi-vendor, multicentre comparison of contrast-enhanced SSFP and T2-STIR CMR for determining myocardium at risk in ST-elevation myocardial infarction
  • 2016
  • Ingår i: European Heart Journal-Cardiovascular Imaging. - : Oxford University Press (OUP). - 2047-2412 .- 2047-2404. ; 17:7, s. 744-753
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS: Myocardial salvage, determined by cardiac magnetic resonance imaging (CMR), is used as end point in cardioprotection trials. To calculate myocardial salvage, infarct size is related to myocardium at risk (MaR), which can be assessed by T2-short tau inversion recovery (T2-STIR) and contrast-enhanced steady-state free precession magnetic resonance imaging (CE-SSFP). We aimed to determine how T2-STIR and CE-SSFP perform in determining MaR when applied in multicentre, multi-vendor settings.METHODS AND RESULTS: A total of 215 patients from 17 centres were included after percutaneous coronary intervention (PCI) for ST-elevation myocardial infarction. CMR was performed within 1-8 days. These patients participated in the MITOCARE or CHILL-MI cardioprotection trials. Additionally, 8 patients from a previous study, imaged 1 day post-CMR, were included. Late gadolinium enhancement, T2-STIR, and CE-SSFP images were acquired on 1.5T MR scanners (Philips, Siemens, or GE). In 65% of the patients, T2-STIR was of diagnostic quality compared with 97% for CE-SSFP. In diagnostic quality images, there was no difference in MaR by T2-STIR and CE-SSFP (bias: 0.02 ± 6%, P = 0.96, r(2) = 0.71, P < 0.001), or between treatment and control arms. No change in size or quality of MaR nor ability to identify culprit artery was seen over the first week after the acute event (P = 0.44).CONCLUSION: In diagnostic quality images, T2-STIR and CE-SSFP provide similar estimates of MaR, were constant over the first week, and were not affected by treatment. CE-SSFP had a higher degree of diagnostic quality images compared with T2 imaging for sequences from two out of three vendors. Therefore, CE-SSFP is currently more suitable for implementation in multicentre, multi-vendor clinical trials.
  •  
2.
  •  
3.
  • Bidhult, Sebastian, et al. (författare)
  • Validation of T1 and T2 algorithms for quantitative MRI : Performance by a vendor-independent software
  • 2016
  • Ingår i: BMC Medical Imaging. - : Springer Science and Business Media LLC. - 1471-2342. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Determination of the relaxation time constants T1 and T2 with quantitative magnetic resonance imaging is increasingly used for both research and clinical practice. Recently, groups have been formed within the Society of Cardiovascular Magnetic Resonance to address issues with relaxometry. However, so far they have avoided specific recommendations on methodology due to lack of consensus and current evolving research. Standardised widely available software may simplify this process. The purpose of the current study was to develop and validate vendor-independent T1 and T2 mapping modules and implement those in the versatile and widespread software Segment, freely available for research and FDA approved for clinical applications. Results: The T1 and T2 mapping modules were developed and validated in phantoms at 1.5T and 3T with reference standard values calculated from reference pulse sequences using the Nelder-Mead Simplex optimisation method. The proposed modules support current commonly available MRI pulse sequences and both 2- and 3-parameter curve fitting. Images acquired in patients using three major vendors showed vendor-independence. Bias and variability showed high agreement with T1 and T2 reference standards for T1 (range 214-1752ms) and T2 (range 45-338ms), respectively. Conclusions: The developed and validated T1 and T2 mapping and quantification modules generated relaxation maps from current commonly used MRI sequences and multiple signal models. Patient applications showed usability for three major vendors.
  •  
4.
  • Engblom, Henrik, et al. (författare)
  • A new automatic algorithm for quantification of myocardial infarction imaged by late gadolinium enhancement cardiovascular magnetic resonance : Experimental validation and comparison to expert delineations in multi-center, multi-vendor patient data
  • 2016
  • Ingår i: Journal of Cardiovascular Magnetic Resonance. - : Springer Science and Business Media LLC. - 1097-6647 .- 1532-429X. ; 18:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) using magnitude inversion recovery (IR) or phase sensitive inversion recovery (PSIR) has become clinical standard for assessment of myocardial infarction (MI). However, there is no clinical standard for quantification of MI even though multiple methods have been proposed. Simple thresholds have yielded varying results and advanced algorithms have only been validated in single center studies. Therefore, the aim of this study was to develop an automatic algorithm for MI quantification in IR and PSIR LGE images and to validate the new algorithm experimentally and compare it to expert delineations in multi-center, multi-vendor patient data. Methods: The new automatic algorithm, EWA (Expectation Maximization, weighted intensity, a priori information), was implemented using an intensity threshold by Expectation Maximization (EM) and a weighted summation to account for partial volume effects. The EWA algorithm was validated in-vivo against triphenyltetrazolium-chloride (TTC) staining (n = 7 pigs with paired IR and PSIR images) and against ex-vivo high resolution T1-weighted images (n = 23 IR and n = 13 PSIR images). The EWA algorithm was also compared to expert delineation in 124 patients from multi-center, multi-vendor clinical trials 2-6 days following first time ST-elevation myocardial infarction (STEMI) treated with percutaneous coronary intervention (PCI) (n = 124 IR and n = 49 PSIR images). Results: Infarct size by the EWA algorithm in vivo in pigs showed a bias to ex-vivo TTC of -1 ± 4%LVM (R = 0.84) in IR and -2 ± 3%LVM (R = 0.92) in PSIR images and a bias to ex-vivo T1-weighted images of 0 ± 4%LVM (R = 0.94) in IR and 0 ± 5%LVM (R = 0.79) in PSIR images. In multi-center patient studies, infarct size by the EWA algorithm showed a bias to expert delineation of -2 ± 6 %LVM (R = 0.81) in IR images (n = 124) and 0 ± 5%LVM (R = 0.89) in PSIR images (n = 49). Conclusions: The EWA algorithm was validated experimentally and in patient data with a low bias in both IR and PSIR LGE images. Thus, the use of EM and a weighted intensity as in the EWA algorithm, may serve as a clinical standard for the quantification of myocardial infarction in LGE CMR images. Clinical trial registration: CHILL-MI: NCT01379261. MITOCARE: NCT01374321.
  •  
5.
  • Grigorios-Aris, Cheimariotis, et al. (författare)
  • Automatic segmentation of lungs in SPECT images using active shape model trained by meshes delineated in CT images
  • 2016
  • Ingår i: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016. - 9781457702204 ; 2016-October, s. 1280-1283
  • Konferensbidrag (refereegranskat)abstract
    • This paper presents a fully automated method for segmentation of 3D SPECT ventilation and perfusion images. It relies on statistical information on lung shape derived by CT manual segmentation and its main processing steps are: shape model extraction, binary segmentation, positioning of mean shape in SPECT images and iterative shape adaptation based on intensity profiles and on what is considered 'plausible' lung shape. The Active Shape Model is used to generate accurate anatomic results in SPECT images with functional information and thus unclear borders, especially in the case of pathologies. The method was compared against ground truth manual segmentation on CT images, using volumetric, difference dice coefficient, sensitivity and precision.
  •  
6.
  •  
7.
  • Nordlund, David, et al. (författare)
  • Extent of myocardium at risk for left anterior descending artery, right coronary artery, and left circumflex artery occlusion depicted by contrast-enhanced steady state free precession and T2-weighted short tau inversion recovery magnetic resonance imaging
  • 2016
  • Ingår i: Circulation Cardiovascular Imaging. - 1941-9651. ; 9:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Background - Contrast-enhanced steady state free precession (CE-SSFP) and T2-weighted short tau inversion recovery (T2-STIR) have been clinically validated to estimate myocardium at risk (MaR) by cardiovascular magnetic resonance while using myocardial perfusion single-photon emission computed tomography as reference standard. Myocardial perfusion single-photon emission computed tomography has been used to describe the coronary perfusion territories during myocardial ischemia. Compared with myocardial perfusion single-photon emission computed tomography, cardiovascular magnetic resonance offers superior image quality and practical advantages. Therefore, the aim was to describe the main coronary perfusion territories using CE-SSFP and T2-STIR cardiovascular magnetic resonance data in patients after acute ST-segment-elevation myocardial infarction. Methods and Results - CE-SSFP and T2-STIR data from 2 recent multicenter trials, CHILL-MI and MITOCARE (n=215), were used to assess MaR. Angiography was used to determine culprit vessel. Of 215 patients, 39% had left anterior descending artery occlusion, 49% had right coronary artery occlusion, and 12% had left circumflex artery occlusion. Mean extent of MaR using CE-SSFP was 44±10% for left anterior descending artery, 31±7% for right coronary artery, and 30±9% for left circumflex artery. Using T2-STIR, MaR was 44±9% for left anterior descending artery, 30±8% for right coronary artery, and 30±12% for left circumflex artery. MaR was visualized in polar plots, and expected overlap was found between right coronary artery and left circumflex artery. Detailed regional data are presented for use in software algorithms as a priori information on the extent of MaR. Conclusions - For the first time, cardiovascular magnetic resonance has been used to show the main coronary perfusion territories using CE-SSFP and T2-STIR. The good agreement between CE-SSFP and T2-STIR from this study and myocardial perfusion single-photon emission computed tomography from previous studies indicates that these 3 methods depict MaR accurately in individual patients and at a group level. Clinical Trial Registration - URL: http://www.clinicaltrials.gov. Unique identifiers: NCT01379261 and NCT01374321.
  •  
8.
  • Vavoulas, Alexander, et al. (författare)
  • Using a modified 3D-printer for mapping the magnetic field of RF coils designed for fetal and neonatal imaging
  • 2016
  • Ingår i: Journal of Magnetic Resonance. - : Elsevier BV. - 1090-7807. ; 269, s. 146-151
  • Tidskriftsartikel (refereegranskat)abstract
    • An experimental setup for characterizing the magnetic field of MRI RF coils was proposed and tested. The setup consisted of a specially configured 3D-printer, a network analyzer and a mid-performance desktop PC. The setup was tested on a single loop RF coil, part of a phased array for fetal imaging. Then, the setup was used for determining the magnetic field characteristics of a high-pass birdcage coil used for neonatal MR imaging with a vertical static field. The scattering parameter S21, converted into power ratio, was used for mapping the B1 magnetic field. The experimental measurements from the loop coil were close to the theoretical results (R = 0.924). A high degree of homogeneity was measured for the neonatal birdcage RF coil. The development of MR RF coils is time consuming and resource intensive. The proposed experimental setup provides an alternative method for magnetic field characterization of RF coils used in MRI.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy