SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Anthony Aletras H.) srt2:(2017)"

Sökning: WFRF:(Anthony Aletras H.) > (2017)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Engblom, Henrik, et al. (författare)
  • Fully quantitative cardiovascular magnetic resonance myocardial perfusion ready for clinical use : A comparison between cardiovascular magnetic resonance imaging and positron emission tomography
  • 2017
  • Ingår i: Journal of Cardiovascular Magnetic Resonance. - : Springer Science and Business Media LLC. - 1097-6647 .- 1532-429X. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Recent studies have shown that quantification of myocardial perfusion (MP) at stress and myocardial perfusion reserve (MPR) offer additional diagnostic and prognostic information compared to qualitative and semi-quantitative assessment of myocardial perfusion distribution in patients with coronary artery disease (CAD). Technical advancements have enabled fully automatic quantification of MP using cardiovascular magnetic resonance (CMR) to be performed in-line in a clinical workflow. The aim of this study was to validate the use of the automated CMR perfusion mapping technique for quantification of MP using 13N-NH3 cardiac positron emission tomography (PET) as the reference method. Methods: Twenty-one patients with stable CAD were included in the study. All patients underwent adenosine stress and rest perfusion imaging with 13N-NH3 PET and a dual sequence, single contrast bolus CMR on the same day. Global and regional MP were quantified both at stress and rest using PET and CMR. Results: There was good agreement between global MP quantified by PET and CMR both at stress (-0.1 ± 0.5 ml/min/g) and at rest (0 ± 0.2 ml/min/g) with a strong correlation (r = 0.92, p < 0.001; y = 0.94× + 0.14). Furthermore, there was strong correlation between CMR and PET with regards to regional MP (r = 0.83, p < 0.001; y = 0.87× + 0.26) with a good agreement (-0.1 ± 0.6 ml/min/g). There was also a significant correlation between CMR and PET with regard to global and regional MPR (r = 0.69, p = 0.001 and r = 0.57, p < 0.001, respectively). Conclusions: There is good agreement between MP quantified by 13N-NH3 PET and dual sequence, single contrast bolus CMR in patients with stable CAD. Thus, CMR is viable in clinical practice for quantification of MP.
  •  
2.
  • Haris, Kostas, et al. (författare)
  • Self-gated fetal cardiac MRI with tiny golden angle iGRASP : A feasibility study
  • 2017
  • Ingår i: Journal of Magnetic Resonance Imaging. - : Wiley. - 1522-2586 .- 1053-1807. ; 46:1, s. 207-217
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: To develop and assess a technique for self-gated fetal cardiac cine magnetic resonance imaging (MRI) using tiny golden angle radial sampling combined with iGRASP (iterative Golden-angle RAdial Sparse Parallel) for accelerated acquisition based on parallel imaging and compressed sensing.MATERIALS AND METHODS: Fetal cardiac data were acquired from five volunteers in gestational week 29-37 at 1.5T using tiny golden angles for eddy currents reduction. The acquired multicoil radial projections were input to a principal component analysis-based compression stage. The cardiac self-gating (CSG) signal for cardiac gating was extracted from the acquired radial projections and the iGRASP reconstruction procedure was applied. In all acquisitions, a total of 4000 radial spokes were acquired within a breath-hold of less than 15 seconds using a balanced steady-state free precession pulse sequence. The images were qualitatively compared by two independent observers (on a scale of 1-4) to a single midventricular cine image from metric optimized gating (MOG) and real-time acquisitions.RESULTS: For iGRASP and MOG images, good overall image quality (2.8 ± 0.4 and 2.6 ± 1.3, respectively, for observer 1; 3.6 ± 0.5 and 3.4 ± 0.9, respectively, for observer 2) and cardiac diagnostic quality (3.8 ± 0.4 and 3.4 ± 0.9, respectively, for observer 1; 3.6 ± 0.5 and 3.6 ± 0.9, respectively, for observer 2) were obtained, with visualized myocardial thickening over the cardiac cycle and well-defined myocardial borders to ventricular lumen and liver/lung tissue. For iGRASP, MOG, and real time, left ventricular lumen diameter (14.1 ± 2.2 mm, 14.2 ± 1.9 mm, 14.7 ± 1.1 mm, respectively) and wall thickness (2.7 ± 0.3 mm, 2.6 ± 0.3 mm, 3.0 ± 0.4, respectively) showed agreement and no statistically significant difference was found (all P > 0.05). Images with iGRASP tended to have higher overall image quality scores compared with MOG and particularly real-time images, albeit not statistically significant in this feasibility study (P > 0.99 and P = 0.12, respectively).CONCLUSION: Fetal cardiac cine MRI can be performed with iGRASP using tiny golden angles and CSG. Comparison with other fetal cardiac cine MRI methods showed that the proposed method produces high-quality fetal cardiac reconstructions.LEVEL OF EVIDENCE: 2 J. Magn. Reson. Imaging 2017.
  •  
3.
  • Kantasis, George, et al. (författare)
  • Cloud GPU-based simulations for SQUAREMR
  • 2017
  • Ingår i: Journal of Magnetic Resonance. - : Elsevier BV. - 1090-7807. ; 274, s. 80-88
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantitative Magnetic Resonance Imaging (MRI) is a research tool, used more and more in clinical practice, as it provides objective information with respect to the tissues being imaged. Pixel-wise T1 quantification (T1 mapping) of the myocardium is one such application with diagnostic significance. A number of mapping sequences have been developed for myocardial T1 mapping with a wide range in terms of measurement accuracy and precision. Furthermore, measurement results obtained with these pulse sequences are affected by errors introduced by the particular acquisition parameters used. SQUAREMR is a new method which has the potential of improving the accuracy of these mapping sequences through the use of massively parallel simulations on Graphical Processing Units (GPUs) by taking into account different acquisition parameter sets. This method has been shown to be effective in myocardial T1 mapping; however, execution times may exceed 30 min which is prohibitively long for clinical applications. The purpose of this study was to accelerate the construction of SQUAREMR's multi-parametric database to more clinically acceptable levels. The aim of this study was to develop a cloud-based cluster in order to distribute the computational load to several GPU-enabled nodes and accelerate SQUAREMR. This would accommodate high demands for computational resources without the need for major upfront equipment investment. Moreover, the parameter space explored by the simulations was optimized in order to reduce the computational load without compromising the T1 estimates compared to a non-optimized parameter space approach. A cloud-based cluster with 16 nodes resulted in a speedup of up to 13.5 times compared to a single-node execution. Finally, the optimized parameter set approach allowed for an execution time of 28 s using the 16-node cluster, without compromising the T1 estimates by more than 10 ms. The developed cloud-based cluster and optimization of the parameter set reduced the execution time of the simulations involved in constructing the SQUAREMR multi-parametric database thus bringing SQUAREMR's applicability within time frames that would be likely acceptable in the clinic.
  •  
4.
  • Nordlund, David, et al. (författare)
  • Experimental validation of contrast-enhanced SSFP cine CMR for quantification of myocardium at risk in acute myocardial infarction
  • 2017
  • Ingår i: Journal of Cardiovascular Magnetic Resonance. - : Springer Science and Business Media LLC. - 1097-6647 .- 1532-429X. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Accurate assessment of myocardium at risk (MaR) after acute myocardial infarction (AMI) is necessary when assessing myocardial salvage. Contrast-enhanced steady-state free precession (CE-SSFP) is a recently developed cardiovascular magnetic resonance (CMR) method for assessment of MaR up to 1 week after AMI. Our aim was to validate CE-SSFP for determination of MaR in an experimental porcine model using myocardial perfusion single-photon emission computed tomography (MPS) as a reference standard and to test the stability of MaR-quantification over time after injecting gadolinium-based contrast. Methods: Eleven pigs were subjected to either 35 or 40 min occlusion of the left anterior descending artery followed by six hours of reperfusion. A technetium-based perfusion tracer was administered intravenously ten minutes before reperfusion. In-vivo and ex-vivo CE-SSFP CMR was performed followed by ex-vivo MPS imaging. MaR was expressed as % of left ventricular mass (LVM). Results: There was good agreement between MaR by ex-vivo CMR and MaR by MPS (bias: 1 ± 3% LVM, r 2 = 0.92, p < 0.001), between ex-vivo and in-vivo CMR (bias 0 ± 2% LVM, r 2 = 0.94, p < 0.001) and between in-vivo CMR and MPS (bias -2 ± 3% LVM, r 2 = 0.87, p < 0.001. No change in MaR was seen over the first 30 min after contrast injection (p = 0.95). Conclusions: Contrast-enhanced SSFP cine CMR can be used to measure MaR, both in vivo and ex vivo, in a porcine model with good accuracy and precision over the first 30 min after contrast injection. This offers the option to use the less complex ex-vivo imaging when determining myocardial salvage in experimental studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy