SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Aperia A) srt2:(2010-2014)"

Sökning: WFRF:(Aperia A) > (2010-2014)

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Illarionova, N. B., et al. (författare)
  • FUNCTIONAL AND MOLECULAR INTERACTIONS BETWEEN AQUAPORINS AND Na,K-ATPase
  • 2010
  • Ingår i: Neuroscience. - : Elsevier BV. - 0306-4522 .- 1873-7544. ; 168:4, s. 915-925
  • Tidskriftsartikel (refereegranskat)abstract
    • The water channel aquaporin 4 (AQP4) is abundantly expressed in astrocytes and provides a mechanism by which water permeability of the plasma membrane can be regulated. Astrocytes play a key role in the clearance of both potassium (K+) and glutamate released during neuronal activity. Emerging evidence suggests that AQP4 facilitates K+ clearance by astrocytes and contributes to recovery of neuronal excitability. Here we report that AQP4 can assemble with its regulator metabotropic glutamate receptor 5 (mGluR5) and with Na,K-ATPase; the enzyme responsible for active K+ transport and for establishing the electrochemical gradient across the cell plasma membrane. We have, by use of pull down assays in rat brain tissue, identified the segment in the AQP4 NH2-terminus containing the amino acid residues 23-32 as the site for interaction with Na,K-ATPase catalytic subunit and with mGluR5. Mutagenesis studies revealed that the AQP4 amino acids K27 and W30 are of key importance for interaction with both Na,K-ATPase and mGluR5. To confirm that interaction also occurs within intact cells, we have performed fluorescence resonance energy transfer (FRET) studies in primary astrocytes derived from rat striatum. The results indicate close proximity of wild type AQP4 and Na,K-ATPase in the plasma membrane of rat astrocytes. FRET efficiencies observed with the mutants AQP4 K27A and AQP4 W30A were significantly lower, highlighting the importance of these residues for the interaction between AQP4 and Na,K-ATPase. We conclude that AQP4/Na,K-ATPase/mGluR5 can form a macromolecular complex/transporting microdomain in astrocytes. This complex may be of functional importance for the regulation of water and K+ homeostasis in the brain, as well as for neuron-astrocyte metabolic crosstalk. (C) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Blom, Hans, et al. (författare)
  • Spatial Distribution of DARPP-32 in Dendritic Spines
  • 2013
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:9, s. e75155-
  • Tidskriftsartikel (refereegranskat)abstract
    • The phosphoprotein DARPP-32 (dopamine and cyclic adenosine 3́, 5́-monophosphate-regulated phosphoprotein, 32 kDa) is an important component in the molecular regulation of postsynaptic signaling in neostriatum. Despite the importance of this phosphoprotein, there is as yet little known about the nanoscale distribution of DARPP-32. In this study we applied superresolution stimulated emission depletion microscopy (STED) to assess the expression and distribution of DARPP-32 in striatal neurons. Primary culture of striatal neurons were immunofluorescently labeled for DARPP-32 with Alexa-594 and for the dopamine D1 receptor (D1R) with atto-647N. Dual-color STED microscopy revealed discrete localizations of DARPP-32 and D1R in the spine structure, with clustered distributions in both head and neck. Dissected spine structures reveal that the DARPP-32 signal rarely overlapped with the D1R signal. The D1R receptor is positioned in an "aggregated" manner primarily in the spine head and to some extent in the neck, while DARPP-32 forms several neighboring small nanoclusters spanning the whole spine structure. The DARPP-32 clusters have a mean size of 52 +/- 6 nm, which is close to the resolution limit of the microscope and corresponds to the physical size of a few individual phosphoprotein immunocomplexes. Dissection of synaptic proteins using superresolution microscopy gives possibilities to reveal in better detail biologically relevant information, as compared to diffraction-limited microscopy. In this work, the dissected postsynaptic topology of the DARPP-32 phosphoprotein provides strong evidence for a compartmentalized and confined distribution in dendritic spines. The protein topology and the relatively low copy number of phosphoprotein provides a conception of DARPP-32's possibilities to fine-tune the regulation of synaptic signaling, which should have an impact on the performance of the neuronal circuits in which it is expressed.
  •  
10.
  • Brismar, Hjalmar, et al. (författare)
  • Study of protein and RNA in dendritic spines using multi-isotope imaging mass spectrometry (MIMS).
  • 2014
  • Ingår i: Surface and Interface Analysis. - : Wiley. - 0142-2421 .- 1096-9918. ; 46:Suppl 1
  • Tidskriftsartikel (refereegranskat)abstract
    • The classical view of neuronal protein synthesis is that proteins are made in the cell body and then transported to their functional sites in the dendrites and the dendritic spines. Indirect evidence, however, suggests that protein synthesis can directly occur in the distal dendrites, far from the cell body. We are developing protocols for dual labeling of RNA and proteins using (15)N-uridine and (18)O- or (13)C-leucine pulse chase in cultured neurons to identify and localize both protein synthesis and fate of newly synthesized proteins. Pilot experiments show discrete localization of both RNA and newly synthesized proteins in dendrites, close to dendritic spines. We have for the first time directly imaged and measured the production of proteins at the subcellular level in the neuronal dendrites, close to the functional sites, the dendritic spines. This will open a powerful way to study neural growth and synapse plasticity in health and disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy