SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Apostolova I.) srt2:(2020)"

Sökning: WFRF:(Apostolova I.) > (2020)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lukina, I N, et al. (författare)
  • Effect of synthesis parameters on the structure and properties of carbon particles formed from amorphous fullerites
  • 2020
  • Konferensbidrag (refereegranskat)abstract
    • The effect of high-pressure synthesis temperature on the structure and indentation characteristics of the superelastic hard carbon formed from amorphous fullerites and on the tribological properties of the Co-based composite materials (CM) reinforced by the particles of such carbon has been studied by Raman spectroscopy, high-resolution transmission electron microscopy (HRTEM), indentation measurements, and tribological tests. It is shown that ball milling (for 48 h) of C60 fullerite crystals results in the amorphization of the product of fullerite transformation upon their high-pressure treatment at temperatures above the stability limit of fullerene molecule (~800°C). An increase in synthesis temperature at 8 GPa from 800°C to 1200°C leads to a gradual graphitization of the structure of amorphous fullerite derived carbon. This decreases its hardness and indentation modulus from 32 to 18 GPa and from 256 to 95 GPa, respectively, and increases the elastic recovery (from 80% to 86%). The best tribological characteristics of the CM are attained at the maximum particle hardness, which is realized in the CM synthesized at 800°C. When the synthesis temperature is elevated to 1200°C, the friction coefficient and wear rate of the CM increase, but they remain substantially lower than those of the matrix cobalt.
  •  
2.
  • Ozden, C., et al. (författare)
  • FDG Uptake in the Basal Forebrain as Measured by Digital High-Resolution PET Is a Promising Marker of Basal Forebrain Degeneration in the Lewy Body Disease Spectrum A Pilot Study
  • 2020
  • Ingår i: Clinical Nuclear Medicine. - : Ovid Technologies (Wolters Kluwer Health). - 0363-9762 .- 1536-0229. ; 45:4, s. 261-266
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose Cognitive decline in diseases of the Lewy body spectrum (LBS) is linked to dysfunction/degeneration of the basal forebrain (BF). Assessment of glucose metabolism in the BF by FDG PET is hampered by the small size of the BF and limited spatial resolution of conventional PET. This pilot study tested the feasibility of assessing BF glucose metabolism by high-resolution digital PET (dPET). Patients and Methods The retrospective study included 12 LBS patients (61-86 years, 5 demented). Whole-brain stereotactic normalization to anatomical standard space was followed by local stereotactic normalization of a 7 x 7 x 7-cm(3) box around the BF to a custom-made 1 x 1 x 1-mm(3) FDG dPET template. FDG uptake was scaled voxelwise to mean FDG uptake in the pons. Scaled FDG uptake in the BF was compared between demented and nondemented LBS patients and tested for correlation with cortical FDG uptake. Results Scaled FDG uptake in the BF was significantly lower in demented compared with nondemented patients (1.14 +/- 0.09 vs 1.25 +/- 0.06, P = 0.031). Brain-wide voxel-based testing for correlations with scaled FDG uptake in the BF revealed a large cluster comprising medial and ventrolateral frontal cortex, anterior cingulate cortex, insular cortex, and striatum as well as smaller clusters in motor cortex and occipital cortex (P < 0.001, uncorrected). Conclusions These results suggest that dementia-associated BF degeneration in LBS can be sensitively measured as reduced BF FDG uptake on dPET. More accurate delineation of the BF based on individual high-resolution MRI might be useful to make optimal use of improved spatial resolution of dPET and to correct for possible disease- and age-dependent partial volume effects.
  •  
3.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy