SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Armus L.) srt2:(2015-2019)"

Sökning: WFRF:(Armus L.) > (2015-2019)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Leisawitz, David, et al. (författare)
  • The origins space telescope
  • 2019
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. ; 11115
  • Konferensbidrag (refereegranskat)abstract
    • The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the universe today? How do habitable planets form? How common are life-bearing worlds? To answer these alluring questions, Origins will operate at mid-and far-infrared wavelengths and offer powerful spectroscopic instruments and sensitivity three orders of magnitude better than that of Herschel, the largest telescope flown in space to date. After a 3 1/2 year study, the Origins Science and Technology Definition Team will recommend to the Decadal Survey a concept for Origins with a 5.9-m diameter telescope cryocooled to 4.5 K and equipped with three scientific instruments. A mid-infrared instrument (MISC-T) will measure the spectra of transiting exoplanets in the 2.8-20 μm wavelength range and offer unprecedented sensitivity, enabling definitive biosignature detections. The Far-IR Imager Polarimeter (FIP) will be able to survey thousands of square degrees with broadband imaging at 50 and 250 μm. The Origins Survey Spectrometer (OSS) will cover wavelengths from 25-588 μm, make wide-area and deep spectroscopic surveys with spectral resolving power R ∼ 300, and pointed observations at R ∼ 40,000 and 300,000 with selectable instrument modes. Origins was designed to minimize complexity. The telescope has a Spitzer-like architecture and requires very few deployments after launch. The cryo-thermal system design leverages JWST technology and experience. A combination of current-state-of-the-art cryocoolers and next-generation detector technology will enable Origins' natural backgroundlimited sensitivity.
  •  
2.
  • Leisawitz, David, et al. (författare)
  • The Origins Space Telescope: Mission concept overview
  • 2018
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. ; 10698
  • Konferensbidrag (refereegranskat)abstract
    • Downloading of the abstract is permitted for personal use only. The Origins Space Telescope (OST) will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did the universe evolve in response to its changing ingredients? How common are life-bearing planets? To accomplish its scientific objectives, OST will operate at mid- and far-infrared wavelengths and offer superlative sensitivity and new spectroscopic capabilities. The OST study team will present a scientifically compelling, executable mission concept to the 2020 Decadal Survey in Astrophysics. To understand the concept solution space, our team studied two alternative mission concepts. We report on the study approach and describe both of these concepts, give the rationale for major design decisions, and briefly describe the mission-enabling technology.
  •  
3.
  • Spinoglio, L., et al. (författare)
  • 2017
  • Ingår i: Publications Astronomical Society of Australia. - : Cambridge University Press (CUP). - 1323-3580 .- 1448-6083. ; 34
  • Tidskriftsartikel (refereegranskat)abstract
    • IR spectroscopy in the range 12-230 mu m with the SPace IR telescope for Cosmology and Astrophysics (SPICA) will reveal the physical processes governing the formation and evolution of galaxies and black holes through cosmic time, bridging the gap between the James Webb Space Telescope and the upcoming Extremely Large Telescopes at shorter wavelengths and the Atacama Large Millimeter Array at longer wavelengths. The SPICA, with its 2.5-m telescope actively cooled to below 8 K, will obtain the first spectroscopic determination, in the mid-IR rest-frame, of both the star-formation rate and black hole accretion rate histories of galaxies, reaching lookback times of 12 Gyr, for large statistically significant samples. Densities, temperatures, radiation fields, and gas-phase metallicities will be measured in dust-obscured galaxies and active galactic nuclei, sampling a large range in mass and luminosity, from faint local dwarf galaxies to luminous quasars in the distant Universe. Active galactic nuclei and starburst feedback and feeding mechanisms in distant galaxies will be uncovered through detailed measurements of molecular and atomic line profiles. The SPICA's large-area deep spectrophotometric surveys will provide mid-IR spectra and continuum fluxes for unbiased samples of tens of thousands of galaxies, out to redshifts of z similar to 6.
  •  
4.
  • Roelfsema, P. R., et al. (författare)
  • SPICA-A Large Cryogenic Infrared Space Telescope : Unveiling the Obscured Universe
  • 2018
  • Ingår i: Publications Astronomical Society of Australia. - : Cambridge University Press (CUP). - 1323-3580 .- 1448-6083. ; 35
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements in the infrared wavelength domain allow direct assessment of the physical state and energy balance of cool matter in space, enabling the detailed study of the processes that govern the formation and evolution of stars and planetary systems in galaxies over cosmic time. Previous infrared missions revealed a great deal about the obscured Universe, but were hampered by limited sensitivity. SPICA takes the next step in infrared observational capability by combining a large 2.5-meter diameter telescope. cooled to below 8 K, with instruments employing ultra-sensitive detectors. A combination of passive cooling and mechanical coolers will be used to cool both the telescope and the instruments. With mechanical coolers the mission lifetime is not limited by the supply of cryogen. With the combination of low telescope background and instruments with state-of-the-art detectors SPICA provides a huge advance on the capabilities of previous missions. SPICA instruments offer spectral resolving power ranging from R similar to 50 through 11 000 in the 17-230 mu m domain and R similar to 28.000 spectroscopy between 12 and 18 mu m.SPICA will provide efficient 30-37 mu m broad band mapping, and small field spectroscopic and polarimetric imaging at 100, 200 and 350 mu m. SPICA will provide infrared spectroscopy with an unprecedented sensitivity of similar to 5 x 10(-20) W m (-2) (5 sigma/1 h)-over two orders of magnitude improvement over what earlier missions. This exceptional performance leap, will open entirely new domains in infrared astronomy; galaxy evolution and metal production over cosmic time, dust formation and evolution from very early epochs onwards, the formation history of planetary systems.
  •  
5.
  • Battersby, C., et al. (författare)
  • The Origins Space Telescope
  • 2018
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 2:8, s. 596-599
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The Origins Space Telescope, one of four large Mission Concept Studies sponsored by NASA for review in the 2020 US Astrophysics Decadal Survey, will open unprecedented discovery space in the infrared, unveiling our cosmic origins.
  •  
6.
  • Herrero-Illana, R., et al. (författare)
  • Molecular gas and dust properties of galaxies from the Great Observatories All-sky LIRG Survey
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 628
  • Tidskriftsartikel (refereegranskat)abstract
    • We present IRAM-30 m Telescope (CO)-C-12 and (CO)-C-13 observations of a sample of 55 luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) in the local universe. This sample is a subset of the Great Observatory All-Sky LIRG Survey (GOALS), for which we use ancillary multi-wavelength data to better understand their interstellar medium and star formation properties. Fifty-three (96%) of the galaxies are detected in (CO)-C-12, and 29 (52%) are also detected in (CO)-C-13 above a 3 sigma level. The median full width at zero intensity (FWZI) velocity of the CO line emission is 661 km s(-1), and similar to 54% of the galaxies show a multi-peak CO profile. Herschel photometric data is used to construct the far-IR spectral energy distribution of each galaxy, which are fit with a modified blackbody model that allows us to derive dust temperatures and masses, and infrared luminosities. We make the assumption that the gas-to-dust mass ratio of (U)LIRGs is comparable to local spiral galaxies with a similar stellar mass (i.e., gas/dust of mergers is comparable to their progenitors) to derive a CO-to-H-2 conversion factor of = 1.8(-0.8)(+1.3) M-circle dot (K km s(-1) pc(2))(-1); such a value is comparable to that derived for (U)LIRGs based on dynamical mass arguments. We derive gas depletion times of 400 600 Myr for the (U)LIRGs, compared to the 1.3 Gyr for local spiral galaxies. Finally, we re-examine the relationship between the (CO)-C-12/(CO)-C-13 ratio and dust temperature, confirming a transition to elevated ratios in warmer systems.
  •  
7.
  • Meixner, Margaret, et al. (författare)
  • Overview of the Origins Space telescope: Science drivers to observatory requirements
  • 2018
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. ; 10698
  • Konferensbidrag (refereegranskat)abstract
    • The Origins Space Telescope (OST) mission concept study is the subject of one of the four science and technology definition studies supported by NASA Headquarters to prepare for the 2020 Astronomy and Astrophysics Decadal Survey. OST will survey the most distant galaxies to discern the rise of metals and dust and to unveil the co-evolution of galaxy and blackhole formation, study the Milky Way to follow the path of water from the interstellar medium to habitable worlds in planetary systems, and measure biosignatures from exoplanets. This paper describes the science drivers and how they drove key requirements for OST Mission Concept 2, which will operate between ∼5 and ∼600 microns with a JWST sized telescope. Mission Concept 2 for the OST study optimizes the engineering for the key science cases into a powerful and more economical observatory compared to Mission Concept 1.
  •  
8.
  • Rosenberg, M. J. F., et al. (författare)
  • The Herschel Comprehensive (U)lirg Emission Survey (Hercules): Co Ladders, Fine Structure Lines, and Neutral Gas Cooling
  • 2015
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 801:2
  • Tidskriftsartikel (refereegranskat)abstract
    • (Ultra) luminous infrared galaxies ((U)LIRGs) are objects characterized by their extreme infrared (8-1000 mu m) luminosities (L-LIRG > 10(11) L-circle dot and L-ULIRG > 10(12) L-circle dot). The Herschel Comprehensive ULIRG Emission Survey (PI: van derWerf) presents a representative flux-limited sample of 29 (U)LIRGs that spans the full luminosity range of these objects (10(11)L(circle dot)
  •  
9.
  • Aalto, Susanne, 1964, et al. (författare)
  • Probing highly obscured, self-absorbed galaxy nuclei with vibrationally excited HCN
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 584
  • Tidskriftsartikel (refereegranskat)abstract
    • We present high resolution (0.'' 4) IRAM PdBI and ALMA mm and submm observations of the (ultra) luminous infrared galaxies ((U)LIRGs) IRAS 17208-0014, Arp220, IC 860 and Zw049.057 that reveal intense line emission from vibrationally excited (nu(2) = 1) J = 3-2 and 4-3 HCN. The emission is emerging from buried, compact (r 5 x 10(13) L-circle dot kpc(-2). These nuclei are likely powered by accreting supermassive black holes (SMBHs) and/or hot (>200 K) extreme starbursts. Vibrational, nu(2) = 1, lines of HCN are excited by intense 14 mu m mid-infrared emission and are excellent probes of the dynamics, masses, and physical conditions of (U)LIRG nuclei when H-2 column densities exceed 10(24) cm(-2). It is clear that these lines open up a new interesting avenue to gain access to the most obscured AGNs and starbursts. Vibrationally excited HCN acts as a proxy for the absorbed mid-infrared emission from the embedded nuclei, which allows for reconstruction of the intrinsic, hotter dust SED. In contrast, we show strong evidence that the ground vibrational state (. = 0), J = 3-2 and 4-3 rotational lines of HCN and HCO+ fail to probe the highly enshrouded, compact nuclear regions owing to strong self-and continuum absorption. The HCN and HCO+ line profiles are double-peaked because of the absorption and show evidence of non-circular motions-possibly in the form of in-or outflows. Detections of vibrationally excited HCN in external galaxies are so far limited to ULIRGs and early-type spiral LIRGs, and we discuss possible causes for this. We tentatively suggest that the peak of vibrationally excited HCN emission is connected to a rapid stage of nuclear growth, before the phase of strong feedback.
  •  
10.
  • Privon, G., et al. (författare)
  • EXCITATION MECHANISMS FOR HCN(1-0) AND HCO+ (1-0) IN GALAXIES FROM THE GREAT OBSERVATORIES ALL-SKY LIRG SURVEY
  • 2015
  • Ingår i: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 814:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present new Institut de Radioastronomie Millimetrique (TRAM) 30 m spectroscopic observations of the similar to 88 GHz band, including emission from the CCH (N = 1 -> 0) multiplet, HCN (J = 1 -> 0), HCO (J = 1 -> 0), and HNC (J = 1 -> 0), for a sample of 58 local luminous and ultraluminous infrared galaxies from the Great Observatories All-sky LIRG Survey (GOALS). By combining our new TRAM data with literature data and Spitzer /IRS spectroscopy, we study the correspondence between these putative tracers of dense gas and the relative contribution of active galactic nuclei (AGNs) and star formation to the mid-infrared luminosity of each system. We find the HCN (1-0) emission to be enhanced in AGN-dominated systems (L'(HCN(1 0))/ L'(HCO+(1-o))) = 1.84), compared to composite and starburst-dominated systems (L'HCN(1413/(1-0)) = 1.14, and 0.88, respectively). However, some composite and starburst systems have LH/ CN (1 0) /LH/ CO (1 0) ratios comparable to those of AGNs, indicating that enhanced HCN emission is not uniquely associated with energetically dominant AGNs. After removing AGN-dominated systems from the sample, we find a linear relationship (within the uncertainties) between logio(L'(HCN(1-0))) and log(10)(LIR), consistent with most previous findings. Lc N(1 0) /LIR, typically interpreted as the dense-gas depletion time, appears to have no systematic trend with LIR for our sample of luminous and ultraluminous infrared galaxies, and has significant scatter. The galaxyintegrated L'(HCN(1-0)) and L'(HCO+(1-0)) emission do not appear to have a simple interpretation in terms of the AGN dominance or the star formation rate, and are likely determined by multiple processes, including density and radiative effects.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy