SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Aronson R) srt2:(2015-2019)"

Search: WFRF:(Aronson R) > (2015-2019)

  • Result 1-10 of 22
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Adare, A., et al. (author)
  • Measurements of Elliptic and Triangular Flow in High-Multiplicity He-3 + Au Collisions at root s(NN)=200 GeV
  • 2015
  • In: Physical Review Letters. - 1079-7114. ; 115:14
  • Journal article (peer-reviewed)abstract
    • We present the first measurement of elliptic (v(2)) and triangular (v(3)) flow in high-multiplicity He-3 + Au collisions at root s(NN) = 200 GeV. Two-particle correlations, where the particles have a large separation in pseudorapidity, are compared in He-3 + Au and in p + p collisions and indicate that collective effects dominate the second and third Fourier components for the correlations observed in the He-3 + Au system. The collective behavior is quantified in terms of elliptic v(2) and triangular v(3) anisotropy coefficients measured with respect to their corresponding event planes. The v(2) values are comparable to those previously measured in d + Au collisions at the same nucleon-nucleon center-of-mass energy. Comparisons with various theoretical predictions are made, including to models where the hot spots created by the impact of the three He-3 nucleons on the Au nucleus expand hydrodynamically to generate the triangular flow. The agreement of these models with data may indicate the formation of low-viscosity quark-gluon plasma even in these small collision systems.
  •  
3.
  • Jiang, X., et al. (author)
  • Shared heritability and functional enrichment across six solid cancers
  • 2019
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10
  • Journal article (peer-reviewed)abstract
    • Quantifying the genetic correlation between cancers can provide important insights into the mechanisms driving cancer etiology. Using genome-wide association study summary statistics across six cancer types based on a total of 296,215 cases and 301,319 controls of European ancestry, here we estimate the pair-wise genetic correlations between breast, colorectal, head/neck, lung, ovary and prostate cancer, and between cancers and 38 other diseases. We observed statistically significant genetic correlations between lung and head/neck cancer (r(g) = 0.57, p = 4.6 x 10(-8)), breast and ovarian cancer (r(g) = 0.24, p = 7 x 10(-5)), breast and lung cancer (r(g) = 0.18, p = 1.5 x 10(-6)) and breast and colorectal cancer (r(g) = 0.15, p = 1.1 x 10(-4)). We also found that multiple cancers are genetically correlated with non-cancer traits including smoking, psychiatric diseases and metabolic characteristics. Functional enrichment analysis revealed a significant excess contribution of conserved and regulatory regions to cancer heritability. Our comprehensive analysis of cross-cancer heritability suggests that solid tumors arising across tissues share in part a common germline genetic basis.
  •  
4.
  • Adare, A., et al. (author)
  • Systematic study of azimuthal anisotropy in Cu plus Cu and Au plus Au collisions at root s(NN)=62.4 and 200 GeV
  • 2015
  • In: Physical Review C (Nuclear Physics). - 0556-2813. ; 92:3
  • Journal article (peer-reviewed)abstract
    • We have studied the dependence of azimuthal anisotropy nu(2) for inclusive and identified charged hadrons in Au + Au and Cu + Cu collisions on collision energy, species, and centrality. The values of nu(2) as a function of transverse momentum pT and centrality in Au + Au collisions at root s(NN) = 200 and 62.4 GeV are the same within uncertainties. However, in Cu + Cu collisions we observe a decrease in nu(2) values as the collision energy is reduced from 200 to 62.4 GeV. The decrease is larger in the more peripheral collisions. By examining both Au + Au and Cu + Cu collisions we find that nu(2) depends both on eccentricity and the number of participants, N-part. We observe that nu(2) divided by eccentricity (epsilon) monotonically increases with N-part and scales as N-part(1/3). The Cu + Cu data at 62.4 GeV falls below the other scaled nu(2) data. For identified hadrons, nu(2) divided by the number of constituent quarks n(q) is independent of hadron species as a function of transverse kinetic energy K E-T = m(T) - m between 0.1 < K E-T / n(q) < 1 GeV. Combining all of the above scaling and normalizations, we observe a near-universal scaling, with the exception of the Cu + Cu data at 62.4 GeV, of nu(2)/(nq center dot e center dot N-part(1/3)) vs K E-T / n(q) for all measured particles.
  •  
5.
  • Figlioli, G, et al. (author)
  • The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer
  • 2019
  • In: NPJ breast cancer. - : Springer Science and Business Media LLC. - 2374-4677. ; 5, s. 38-
  • Journal article (peer-reviewed)abstract
    • Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM−/− patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors.
  •  
6.
  •  
7.
  •  
8.
  • Ferreira, MA, et al. (author)
  • Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer
  • 2019
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 1741-
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies (GWAS) have identified more than 170 breast cancer susceptibility loci. Here we hypothesize that some risk-associated variants might act in non-breast tissues, specifically adipose tissue and immune cells from blood and spleen. Using expression quantitative trait loci (eQTL) reported in these tissues, we identify 26 previously unreported, likely target genes of overall breast cancer risk variants, and 17 for estrogen receptor (ER)-negative breast cancer, several with a known immune function. We determine the directional effect of gene expression on disease risk measured based on single and multiple eQTL. In addition, using a gene-based test of association that considers eQTL from multiple tissues, we identify seven (and four) regions with variants associated with overall (and ER-negative) breast cancer risk, which were not reported in previous GWAS. Further investigation of the function of the implicated genes in breast and immune cells may provide insights into the etiology of breast cancer.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view