SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Aronsson Patrik 1983) srt2:(2010-2014)"

Sökning: WFRF:(Aronsson Patrik 1983) > (2010-2014)

  • Resultat 1-10 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aronsson, Patrik, 1983, et al. (författare)
  • Adenosine receptor antagonism suppresses functional and histological inflammatory changes in the rat urinary bladder.
  • 2012
  • Ingår i: Autonomic neuroscience : basic & clinical. - : Elsevier BV. - 1872-7484. ; 171:1-2, s. 49-57
  • Tidskriftsartikel (refereegranskat)abstract
    • Cyclophosphamide (CYP) induces an interstitial cystitis-like inflammation. The resulting bladder dysfunction has been associated with increased release of adenosine-5'-triphosphate (ATP), structural bladder wall changes and contractile impairment. Due to the inflammatory modulatory effects of purines it was presently wondered if pre-treatment with P1 and P2 purinoceptor antagonists affect the CYP-induced alterations. Rats were pre-treated with saline or antagonists for five days, and 60h before the in vitro functional examination the rats were administered either saline or CYP. Histological examination revealed CYP-induced bladder wall thickening largely depending on submucosal enlargement, mast cell invasion of the detrusor muscle, increase in muscarinic M5 receptor expression and macrophage migration inhibitory factor (MIF) occurrence in large parts of the urothelium. Functionally, methacholine- and ATP-evoked contractions were smaller in urinary bladders from CYP-treated rats. Pre-treatment with the P2 purinoceptor antagonist suramin and the P1A2B antagonist PSB1115 did not to any great extent affect the CYP-induced changes. The P1A1 antagonist DPCPX, however, abolished the difference of methacholine-evoked contractions between saline- and CYP-treated rats. ATP-evoked contractions were reduced in control after the DPCPX pre-treatment, but not in cystitis. The functional observations for DPCPX were supported by its suppression of CYP-induced submucosal thickening, muscarinic M5 receptor expression and, possibly, detrusor mast cell infiltration and the spread of urothelial MIF occurrence. Thus, P1A1 is an important pro-inflammatory receptor in the acute CYP-induced cystitis and a P1A1 blockade during the initial phase may suppress CYP-induced cystitis. P1A1 purinoceptors seem to regulate contractility in healthy and in inflamed rat urinary bladders.
  •  
2.
  •  
3.
  • Aronsson, Patrik, 1983, et al. (författare)
  • Inhibition of Nitric Oxide Synthase Prevents Muscarinic and Purinergic Functional Changes and Development of Cyclophosphamide-Induced Cystitis in the Rat
  • 2014
  • Ingår i: Biomed research international. - : Hindawi Limited. - 2314-6133 .- 2314-6141.
  • Tidskriftsartikel (refereegranskat)abstract
    • Nitric oxide (NO) has pivotal roles in cyclophosphamide-(CYP-) induced cystitis during which mucosal nitric oxide synthase (NOS) and muscarinic M5 receptor expressions are upregulated. In cystitis, urothelial muscarinic NO-linked effects hamper contractility. Therefore we wondered if a blockade of this axis also affects the induction of cystitis in the rat. Rats were pretreated with saline, the muscarinic receptor antagonist 4-DAMP (1mg/kg ip), or the NOS inhibitor L-NAME (30mg/kg ip) for five days. 60 h before the experiments the rats were treated with saline or CYP. Methacholine-, ATP-, and adenosine-evoked responses were smaller in preparations from CYP-treated rats than from saline-treated ones. Pretreatment with 4-DAMP did not change this relation, while pretreatment with L-NAME normalized the responses in the CYP-treated animals. The functional results were strengthened by the morphological observations; 4-DAMP pretreatment did not affect the parameters studied, namely, expression of muscarinic M5 receptors, P1A1 purinoceptors, mast cell distribution, or bladder wall enlargement. However, pretreatment with L-NAME attenuated the differences. Thus, the current study provides new insights into the complex mechanisms behind CYP-induced cystitis. The NO effects coupled to urothelial muscarinic receptors have a minor role in the development of cystitis. Inhibition of NOS may prevent the progression of cystitis.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Andersson, Michael, 1980, et al. (författare)
  • Muscarinic receptor subtypes involved in urothelium-derived relaxatory effects in the inflamed rat urinary bladder.
  • 2012
  • Ingår i: Autonomic neuroscience : basic & clinical. - : Elsevier BV. - 1872-7484. ; 170:1-2, s. 5-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Functional studies have shown altered cholinergic mechanisms in the inflamed bladder, which partly depend on muscarinic receptor-induced release of nitric oxide (NO). The current study aimed to characterize which muscarinic receptor subtypes that are involved in the regulation of the nitrergic effects in the bladder cholinergic response during cystitis. For this purpose, in vitro examinations of carbachol-evoked contractions of inflamed and normal bladder preparations were performed. The effects of antagonists with different selectivity for the receptor subtypes were assessed on intact and urothelium-denuded bladder preparations. In preparations from cyclophosphamide (CYP; in order to induce cystitis) pre-treated rats, the response to carbachol was about 75% of that of normal preparations. Removal of the urothelium or administration of a nitric oxide synthase inhibitor re-established the responses in the inflamed preparations. Administration of 4-diphenylacetoxy-N-methylpiperidine (4-DAMP) inhibited the carbachol-induced contractile responses of preparations from CYP pre-treated rats less potently than controls. Pirenzepine and p-fluoro-hexahydro-sila-diphenidol (pFHHSiD) affected the carbachol-induced contractile responses to similar extents in preparations of CYP pre-treated and control rats. However, the Schild slopes for the three antagonists were all significantly different from unity in the preparations from CYP pre-treated rats. Again, l-NNA or removal of the urothelium eliminated any difference compared to normal preparations. This study confirms that muscarinic receptor stimulation in the inflamed rat urinary bladder induces urothelial release of NO, which counteracts detrusor contraction.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy