SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Artaud J. F.) srt2:(2015-2019)"

Sökning: WFRF:(Artaud J. F.) > (2015-2019)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Joffrin, E., et al. (författare)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
2.
  •  
3.
  • Joly, J., et al. (författare)
  • Self-consistent modelling of heating synergy between NBI and ICRH in JET deuterium plasmas
  • 2019
  • Ingår i: Plasma Physics and Controlled Fusion. - : Institute of Physics Publishing (IOPP). - 0741-3335 .- 1361-6587. ; 61:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Auxiliary heating is essential to initiate fusion in future tokamaks. In particular, ion heating tends to maximise the alpha power generation by increasing the thermal ion temperature. In order to simulate the plasma heating by ion cyclotron radio frequency waves, the EVE code, a full wave code for IC wave propagation, and SPOT, an orbit following Monte Carlo code combined with the RFOF library which calculates the absorption of wave by ions, have been coupled together. This new package is used for simulating JET plasmas with strong interplay between ion cyclotron resonant heating and neutral beam injection. Simulations shows that up to 20% of the neutron rate generated in recent JET D plasmas is due to the synergy between both heating mechanisms. However, the H concentration plays a critical role on such interplay, because the synergy efficiency weakens with the H concentration. Therefore, the control of the H concentration is mandatory for optimising the fusion reaction rate generation at JET.
  •  
4.
  • Pinches, S. D., et al. (författare)
  • Implementation of plasma simulators and plasma reconstruction workflows in ITER’s Integrated Modelling & Analysis Suite (IMAS)
  • 2017
  • Ingår i: 44th EPS Conference on Plasma Physics, EPS 2017. - : European Physical Society (EPS).
  • Konferensbidrag (refereegranskat)abstract
    • IMAS has been installed within the majority of the ITER Members and is being used to support ITPA activities including code benchmarking and validation. Sophisticated workflows, such as Plasma Simulators and those describing H&CD systems, have been adapted to IMAS and applied to ITER scenarios. The framework is considered sufficiently flexible to handle all foreseen approaches to the integrated (probabilistic) determination of measurement parameters (and their errors). The inclusion of UDA within the IMAS data Access Layer has allowed the fetching of IDSs directly from experimental databases and the demonstration of the first plasma reconstruction chain. An interactive Live Display in which signals are selected through a web interface has also been demonstrated. 
  •  
5.
  •  
6.
  • Schneider, M., et al. (författare)
  • A rapid fast ion Fokker-Planck solver for integrated modelling of tokamaks
  • 2015
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 55:1, s. 013003-
  • Tidskriftsartikel (refereegranskat)abstract
    • The RISK (rapid ion solver for tokamaks) code for simulating the evolution of the distribution function of neutral beam injected ions (NBI) in tokamak plasmas is described. The code has been especially developed for use in integrated modelling frameworks. Within this context, a code needs to be modular, machine independent and fast. RISK fulfils all these conditions. The RISK code solves the bounce averaged Fokker-Planck equation for the species of the injected ions by expanding the distribution function in the eigenfunctions of the collisional pitch angle scattering operator. The velocity dependent coefficient functions are calculated with a finite element solver. Finite orbit width effects are handled by an ad hoc broadening algorithm of the NBI ionization source. In order to assess the validity of the approximations employed in RISK, a comparison with a full orbit following Monte Carlo code is presented. RISK is integrated into the CRONOS transport suite of codes (Artaud et al 2010 Nucl. Fusion 50 043001) and the European integrated modelling (EU-IM) framework (Falchetto et al 2014 Nucl. Fusion 54 043018). The RISK implementation in this platform is discussed and exemplified to show the strength of running simulation codes in a modular and machine independent environment for simulation of fusion plasmas.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy