SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Arvizu Miguel A.) srt2:(2016)"

Sökning: WFRF:(Arvizu Miguel A.) > (2016)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arvizu, Miguel A., et al. (författare)
  • Electrochromic dc sputtered W1-x-y Moy Tix O3 thin films: : Optical properties and durability.
  • 2016
  • Konferensbidrag (refereegranskat)abstract
    • The key component in an electrochromic (EC) device is its primary EC thin film. The outstanding intrinsic ECproperties of tungsten oxide (WO3) make this material the best option available for the cathodic layer in an ECdevice. Nevertheless much research remains in order to optimize WO3 with regard to optical properties, durability,etc. It is well known that addition of titanium (Ti) into the matrix of WO3 increases significantly the resistance of the film to electrochemical cycling both under norma loperation and during accelerated aging in extended voltage ranges [1]. On the other hand, using molybdenum (Mo) as an additive in small concentrations helps to improve the color rendering by shifting th eposition of the maximum of the coloration band to higher energies [2]. The present work reports our recent investigations on thin films of mixed oxides with a focus on ways to optimize tungsten oxide thin films regarding both their durability and color by the addition of Ti and Mo. The films were deposited by reactive DC cosputtering from Mo and W-Ti alloy targets. Cyclic voltammetry, in a three-electrode system consisting of the film and lithium foils, was performed in a solution 1 MLiClO4 in propylene carbonate (Li–PC) as electrolyte. Insitu and ex-situ optical characterization was done for the EC films, and the transmittance switching and coloration efficiency were determined. Durability was studied by analyzing how the charge density evolved and how rapidly the transmittance modulation deteriorated during cycling for the different concentrations of Mo and Ti .References[1] M.A. Arvizu, C.A. Triana, B.I. Stefanov, C.G.Granqvist , G.A. Niklasson, “Electrochromism in SputterdepositedW-Ti Oxide Films: Durability Enhancement dueto Ti”, Solar Energy Materials & Solar Cells 125 (2014)184-189 (and references therein).[2] M.A. Arvizu, C.G. Granqvist and G.A. Niklasson,“Electrochromism in sputter deposited W1–yMoyO3 thinfilms”, Journal of Physics: Conference Series 682 (2016)012005 (and references therein).
  •  
2.
  • Arvizu, Miguel A, et al. (författare)
  • Rejuvenation of degraded electrochromic MoO3 thin films made by DC magnetron sputtering : Preliminary results
  • 2016
  • Ingår i: Journal of Physics: Conference Series. - : Institute of Physics Publishing (IOPP).
  • Konferensbidrag (refereegranskat)abstract
    • Molybdenum oxide thin films were deposited by reactive DC magnetron sputtering and were subjected to voltammetric cycling in an electrolyte comprised of lithium perchlorate in propylene carbonate. The films were heavily degraded during 20 voltammetric cycles in an extended voltage range. The films were subsequently rejuvenated by use of potentiostatic treatments under different voltages during 20 hours. Optical changes were recorded during the electrochemical degradation and ensuing rejuvenation.
  •  
3.
  • Gesheva, Kostadinka, et al. (författare)
  • Optical, structural and electrochromic properties of sputter deposited W-Mo oxide thin films
  • 2016
  • Ingår i: INERA CONFERENCE. - : Institute of Physics Publishing (IOPP).
  • Konferensbidrag (refereegranskat)abstract
    • Thin metal oxide films were investigated by a series of characterization techniques including impedance spectroscopy, spectroscopic ellipsometry, Raman spectroscopy, and Atomic Force Microscopy. Thin film deposition by reactive DC magnetron sputtering was performed at the Ångström Laboratory. W and Mo targets (5 cm diameter) and various oxygen gas flows were employed to prepare samples with different properties, whereas the gas pressure was kept constant at about 30 mTorr. The substrates were 5×5 cm2 plates of unheated glass pre-coated with ITO having a resistance of 40 ohm/sq. Film thicknesses were around 300nm as determined by surface profilometry. Newly acquired equipment was used to study optical spectra, optoelectronic properties, and film structure. Films of WO3 and of mixed W–Mo oxide with three compositions showed coloring and bleaching under the application of a small voltage. Cyclic voltammograms were recorded with a scan rate of 5 mV s–1. Ellipsometric data for the optical constants show dependence on the amount of MoOx in the chemical composition. Single MoOx film, and the mixed one with only 8% MoOx have the highest value of refractive index, and similar dispersion in the visible spectral range. Raman spectra displayed strong lines at wavenumbers between 780 cm–1 and 950 cm–1 related to stretching vibrations of WO3, and MoO3. AFM gave evidence for domains of different composition in mixed W-Mo oxide films.
  •  
4.
  • Morales-Luna, Michael, et al. (författare)
  • Electrochromic properties of W1-x-yNixTiyO3 thin films made by DC magnetron sputtering
  • 2016
  • Ingår i: Thin Solid Films. - : Elsevier BV. - 0040-6090 .- 1879-2731. ; 615, s. 292-299
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated the electrochromic properties of tungsten-nickel-titanium oxide (W1-x-yNixTiyO3) thin films. Special emphasis was put on W0.83-xNixTi0.17O3 since this composition gave the highest electrochemical durability. The films were deposited onto indium-tin oxide coated glass by reactive DC magnetron sputtering, and cyclic voltammetry as well as optical transmittance measurements were performed in an electrolyte of 1 M LiClO4 in propylene carbonate. The potential window was chosen so as to cause rapid degradation of the samples. Elemental compositions were obtained by Rutherford backscattering spectroscopy and structural information by X-ray diffraction. We verified that the titanium additive improved the electrochemical durability of tungsten-oxide-based films and also documented that a further addition of nickel was unable to enhance the EC performance to any significant degree.
  •  
5.
  • Morales-Luna, Michael, et al. (författare)
  • Sputter deposited W1-x-yNixTiyO3 thin films : Electrochromic properties and durability
  • 2016
  • Ingår i: INERA Conference. - : Institute of Physics (IOP).
  • Konferensbidrag (refereegranskat)abstract
    • Previous research demonstrated that a small amount of nickel enhances the coloration efficiency of tungsten-nickel oxide electrochromic (EC) thin films with respect to that of pure tungsten oxide (WO3) films. Furthermore the incorporation of titanium gives an improvement in the durability of tungsten-titanium oxide EC thin films. In this work we investigated the EC performance of tungsten-nickel-titanium oxide (W1-x-yNixTiyO3) EC thin films with emphasis on durability. The films were deposited on indium tin oxide covered glass by reactive dc sputtering from tungsten, tungsten-titanium alloy and nickel targets. Cyclic voltammetry was performed using 1 M LiClO4 in propylene carbonate as electrolyte. The voltage window was chosen to induce fast degradation of the samples within 80 cycles. Elemental compositions were obtained by Rutherford Backscattering Spectroscopy.
  •  
6.
  • Niklasson, Gunnar A., 1953-, et al. (författare)
  • Electrochemical degradation and rejuvenation of electrochromic tungsten oxide thin films
  • 2016
  • Konferensbidrag (refereegranskat)abstract
    • Tungsten oxide is the most widely used cathodic electrochromic material for smart window applications. One of the main challenges for smart window technology is to ensure the durability of the electrochromic devices over a service life of more than 20 years. Hence, in order to facilitate large-scale practical application of electrochromic materials, their degradation under operating conditions must be better understood and preferably prevented. In this paper we address these issues by three different approaches. First we show that the electrochemical ageing of electrochromic tungsten oxide, under stressed conditions, can be described by stretched exponential kinetics. The goal of such accelerated ageing studies is eventually to be able to predict service life using this empirical relationship. Secondly, we report on a recently discovered rejuvenation processes for restoring aged coatings to their initial state. During severe ageing of the coatings, Li ions are trapped in the film, and subsequently these ions can be released by application of a high electrochemical potential for a few hours. We estimate activation energies for the release process from chronoamperometric measurements during rejuvenation. Thirdly we address the issue of the growth of a solid-electrolyte interface. Impedance spectroscopy measurements on tungsten oxide films were used to obtain the interfacial charge transfer resistance. After the films had been subjected to low potentials known to induce degradation, the charge transfer resistance in the usual operating range showed a marked increase. This is interpreted as a signature of the development of a solid-electrolyte interface. A similar increase of the charge transfer resistance has been observed in electrochromic devices subjected to accelerated aging at an elevated temperature of 80oC for a thousand cycles.
  •  
7.
  • Wen, Ruitao, et al. (författare)
  • Electrochromics for energy efficient buildings : Towards long-term durability and materials rejuvenation
  • 2016
  • Ingår i: Surface & Coatings Technology. - : Elsevier BV. - 0257-8972 .- 1879-3347. ; 290, s. 135-139
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrochromic devices such as "smart windows" for energy efficient windows must be durable enough for many years of practical use. Typical devices employ films based on W oxide and Ni oxide, and this paper surveys recent progress on durability-related issues for these materials. In the case of W oxide, we discuss the beneficial effects of Ti addition, and we describe recent and unexpected progress concerning galvanostatic rejuvenation of aged W oxide films. For Ni oxide, we report how charge exchange declination during extended voltammetric cycling can be modeled in terms of a power law.
  •  
8.
  • Wen, Rui-Tao, et al. (författare)
  • Ion Trapping and Detrapping in Amorphous Tungsten Oxide Thin Films Observed by Real-Time Electro-Optical Monitoring
  • 2016
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 0897-4756 .- 1520-5002. ; 28:13, s. 4670-4676
  • Tidskriftsartikel (refereegranskat)abstract
    • Several technologies for energy saving and storage rely on ion exchange between electrodes and electrolytes. In amorphous electrode materials, a detailed knowledge of Li-ion intercalation is hampered by limited information about the structure and transport properties of the materials. Amorphous tungsten oxide is the most studied electrochromic material and suffers from ion trapping-induced degradation of charge capacity and optical modulation span upon extensive electrochemical cycling. In this paper, we investigate trapping and detrapping processes in connection with performance degradation and specifically use real-time electro-optical monitoring to identify different trap energy ranges pertinent to the ion-intercalated system. Evidence of three kinds of traps that degrade electrochromic tungsten oxide during ion intercalation is presented: (i) shallow traps that erode the colored state, (ii) deep traps that lower the bleached-state transmittance, and (iii) irreversible traps. Importantly, Li-ion detrapping from shallow and deep traps takes place by different processes: continuous Li-ion extraction is possible from shallow traps, whereas a certain release time must be exceeded for detrapping from deep traps. Our notions for ion trapping and detrapping, presented here, may serve as a starting point for discussing ion intercalation in various amorphous materials of interest for energy-related applications.
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy