SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Aryal Pradip)
 

Sökning: WFRF:(Aryal Pradip) > (2023) > Metal fusion using ...

Metal fusion using pulsed GasMetal Arc : Melt pool modellingand CFD simulation

Aryal, Pradip (författare)
Högskolan Väst,Avdelningen för svetsteknologi (SV),KAMPT
Choquet, Isabelle, 1965- (preses)
Högskolan Väst,Avdelningen för svetsteknologi (SV)
Carin, Muriel (opponent)
Université de Bretagne-Sud, Lorient (FRA)
 (creator_code:org_t)
ISBN 9789189325463
Trollhättan : University West, 2023
Engelska 112 s.
Serie: PhD Thesis ; 56
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)
Abstract Ämnesord
Stäng  
  • Pulsed gas metal arc is a highly efficient technique used in manufacturing processes like welding and additive manufacturing. It offers high productivity and cost benefits but it is also prone to defect formation when process parameters are not properly controlled and optimized. A deeper process understanding can support achieving improved process control and mitigate these potential drawbacks. Nevertheless, there are still several challenges. For instance, the correlation between the input and output process parameters is non-linear and complex due to the multi-physics nature of the process. In addition, the elevated temperature and the intense radiative emission from the arc, along with the smoke, and the non-transparency of metal, make in-process observation challenging. Modelling and simulation offer a complementary approach to gain a deeper process understanding. In this study, a thermo- and fluid dynamics model was developed, focusing on the melt pool and metal deposition, while simplifying the arc to boundary conditions (decoupled approach). This model incorporates various forces and phenomena such as thermocapillary and electromagnetic forces, melting and solidification, and tracking of surface deformation and droplet coalescence.In the first part of the thesis, the developed model was applied to investigate the effect of workpiece orientations on the melt pool dynamics and reinforced bead geometry in multi-layer gas metal arc welding of a V-groove joint. The comparison of the predicted fusion zone with macrographs obtained from the experiments showed good qualitative agreement. It was found that the force balance in the melt pool changes significantly when changing the workpiece orientation by as little as 20◦ relative to the flat position. This results in distinct melt flow patterns, melt pool shapes, bead geometries, and in some cases, defect formation such as humping, undercut, and insufficient fusion. It was concluded that to avoid these defects a lower angle range is necessary for multilayer welding with the uphill orientation and side inclination.The second part of the thesis focused on analyzing different variants of the model for the electromagnetic force with a decoupled approach. Three commonly used models were compared: (1) the analytical models proposed by Kou and Sun inintegral form, (2) by Tsao and Wu in algebraic form, and (3) the partial differential equations governing the electric and magnetic fields. The comparative investigation was supported by experimental tests that also provided estimates of unknown model parameters and validation data. It was found that the distinct assumptions on which these models rely are not all justified. They resulted inpredicting different melt flow patterns and amplitude of the free surface oscillations, as well as different melt pool shapes and bead geometries. Model (3) is recommended to advance to a predictive melt pool model and was subsequentlyused in the remaining work of the thesis.Furthermore, the literature shows that modeling the effect of pulsed arc on the melt pool using a decoupled approach involves various simplifications. Arc pulsation affects energy and force balance in the melt pool through arc heat flux, arc pressure, and electromagnetic force. A systematic investigation of model variants considering pulsing was conducted using previously documented experimental test cases. The results showed that the influence of arc pressure was insignificant in those cases. However, model variants simplifying arc pulsing to a time-averaged effect underestimated the amplitude of the Marangoni flow and downward flow compared to a more comprehensive approach that considered the time dependence of arc pulsation. Thus, it is recommended to use a meltpool model that accounts for the time-dependent arc pulsation, which was also subsequently utilized in the remaining work of the thesis.The electromagnetic force models discussed earlier assume a stationary free surface when computing the electromagnetic force. However, this force is often at leading order in the vicinity of the arc. In the same region, the metal drop transfer leads to a periodic deformation of the melt pool free surface. In the final part of the thesis, the model was extended to account for free surface deformation when computing the electromagnetic force. This extension was applied to experimental test cases, and a comparison was made with simulation results obtained using the stationary electromagnetic force model. Significant differences in the results were observed, particularly in predicting the experimentally observed fingertip-shaped fusion zone geometry. The proposed improvement in the electromagnetic force model provided better predictions in this regard.
  • Gasmetallbågsprocessen har revolutionerat metallbearbetning och produktionsteknik under ett århundrade med sin påfallande effektivitet och mångsidighet, speciellt vid svetsning. På senare år har denna teknik också tillämpats alltmer inom additiv tillverkning (AM), även känt som 3D-printing. Gasmetallbågsbaserad AM har väckt ett stort industriellt intresse på grund av dess förmåga att tillverka stora och komplexa komponenter. Det finns dock problem, dels kring defekter i processen, dels kring numeriska modellers förmåga att simulera processen. Följaktligen finns det ett behov av en djupare förståelse och förbättrade modeller för att övervinna dessa utmaningar och frigöra den fulla potentialen i denna teknologi. För att angripa detta problem utvecklades och tillämpades modellering med hjälp strömningsmekaniska beräkningar (CFD) i detta avhandlingsarbete, tillsammans med fysiska experiment för att komplettera modelleringsarbetet. Det utförda modelleringsarbetet har gjort det möjligt att förklara hur flödet i smältan och dess geometri orsakar defekter vid ändringar av ett arbetsstyckesorientering så lite som 20◦ jämfört med horisontell positionering vid svets iV-fog. Dessutom använder moderna numeriska modeller för smältans fysikolika delmodeller för att beräkna den elektromagnetiska kraften och tidsberoendet hos en pulserande ljusbåge. Dessa delmodeller jämförandes i en analys föratt förklara deras signifikanta skillnader vid simulering av smältflödet, termisk konvektion, ytvågor, smältans form och stelnade geometri. De föreslagna förbättringarna i modelleringen baserat på denna analys har gett mer noggranna förutsägelser av processens smältzon, vilket bidrar till utvecklingen av en sant prediktiv simuleringsmodell som kommer att vara användbar i den efterfrågade utvecklingen av gasmetallbågsprocessen.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Materialteknik -- Bearbetnings-, yt- och fogningsteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering -- Manufacturing, Surface and Joining Technology (hsv//eng)

Nyckelord

Gas metal arc
Electromagnetic force modelling
Free surface deformation
Computational Fluid Dynamics
OpenFOAM
Gasmetallbågsvetsning
Svetsläge
Elektromagnetiskkraftmodellering
Smältytans rörelser
Computational Fluid Dynamics
OpenFOAM
Production Technology
Produktionsteknik

Publikations- och innehållstyp

vet (ämneskategori)
dok (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Hitta mer i SwePub

Av författaren/redakt...
Aryal, Pradip
Choquet, Isabell ...
Carin, Muriel
Om ämnet
TEKNIK OCH TEKNOLOGIER
TEKNIK OCH TEKNO ...
och Materialteknik
och Bearbetnings yt ...
Delar i serien
Av lärosätet
Högskolan Väst

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy