SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Asmi Eija) srt2:(2020-2024)"

Sökning: WFRF:(Asmi Eija) > (2020-2024)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Boyer, Matthew, et al. (författare)
  • A full year of aerosol size distribution data from the central Arctic under an extreme positive Arctic Oscillation : insights from the Multidisciplinarydrifting Observatory for the Study of Arctic Climate (MOSAiC) expedition
  • 2023
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 23:1, s. 389-415
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic environment is rapidly changing due to accelerated warming in the region. The warming trend is driving a decline in sea ice extent, which thereby enhances feedback loops in the surface energy budget in the Arctic. Arctic aerosols play an important role in the radiative balance and hence the climate response in the region, yet direct observations of aerosols over the Arctic Ocean are limited. In this study, we investigate the annual cycle in the aerosol particle number size distribution (PNSD), particle number concentration (PNC), and black carbon (BC) mass concentration in the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. This is the first continuous, year-long data set of aerosol PNSD ever collected over the sea ice in the central Arctic Ocean. We use a k-means cluster analysis, FLEXPART simulations, and inverse modeling to evaluate seasonal patterns and the influence of different source regions on the Arctic aerosol population. Furthermore, we compare the aerosol observations to land-based sites across the Arctic, using both long-term measurements and observations during the year of the MOSAiC expedition (2019–2020), to investigate interannual variability and to give context to the aerosol characteristics from within the central Arctic. Our analysis identifies that, overall, the central Arctic exhibits typical seasonal patterns of aerosols, including anthropogenic influence from Arctic haze in winter and secondary aerosol processes in summer. The seasonal pattern corresponds to the global radiation, surface air temperature, and timing of sea ice melting/freezing, which drive changes in transport patterns and secondary aerosol processes. In winter, the Norilsk region in Russia/Siberia was the dominant source of Arctic haze signals in the PNSD and BC observations, which contributed to higher accumulation-mode PNC and BC mass concentrations in the central Arctic than at land-based observatories. We also show that the wintertime Arctic Oscillation (AO) phenomenon, which was reported to achieve a record-breaking positive phase during January–March 2020, explains the unusual timing and magnitude of Arctic haze across the Arctic region compared to longer-term observations. In summer, the aerosol PNCs of the nucleation and Aitken modes are enhanced; however, concentrations were notably lower in the central Arctic over the ice pack than at land-based sites further south. The analysis presented herein provides a current snapshot of Arctic aerosol processes in an environment that is characterized by rapid changes, which will be crucial for improving climate model predictions, understanding linkages between different environmental processes, and investigating the impacts of climate change in future Arctic aerosol studies.
  •  
2.
  • Brean, James, et al. (författare)
  • Collective geographical ecoregions and precursor sources driving Arctic new particle formation
  • 2023
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 23:3, s. 2183-2198
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic is a rapidly changing ecosystem, with complex ice–ocean–atmosphere feedbacks. An important process is new particle formation (NPF), from gas-phase precursors, which provides a climate forcing effect. NPF has been studied comprehensively at different sites in the Arctic, ranging from those in the High Arctic and those at Svalbard to those in the continental Arctic, but no harmonised analysis has been performed on all sites simultaneously, with no calculations of key NPF parameters available for some sites. Here, we analyse the formation and growth of new particles from six long-term ground-based stations in the Arctic (Alert, Villum, Tiksi, Zeppelin Mountain, Gruvebadet, and Utqiaġvik). Our analysis of particle formation and growth rates in addition to back-trajectory analysis shows a summertime maxima in the frequency of NPF and particle formation rate at all sites, although the mean frequency and particle formation rates themselves vary greatly between sites, with the highest at Svalbard and lowest in the High Arctic. The summertime growth rate, condensational sinks, and vapour source rates show a slight bias towards the southernmost sites, with vapour source rates varying by around an order of magnitude between the northernmost and southernmost sites. Air masses back-trajectories during NPF at these northernmost sites are associated with large areas of sea ice and snow, whereas events at Svalbard are associated with more sea ice and ocean regions. Events at the southernmost sites are associated with large areas of land and sea ice. These results emphasise how understanding the geographical variation in surface type across the Arctic is key to understanding secondary aerosol sources and providing a harmonised analysis of NPF across the Arctic.
  •  
3.
  • Kesti, Jutta, et al. (författare)
  • Changes in aerosol size distributions over the Indian Ocean during different meteorological conditions
  • 2020
  • Ingår i: Tellus. Series B, Chemical and physical meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 72:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Aerosol emissions in South Asia are large. The emitted aerosols can travel significant distances and, during the Asian southwest monsoon especially, are prone to modification through cloud processing and wet scavenging while being transported. The scale of emissions and transport means that the global climate impact of these aerosols are sensitive to modification en route, but the process-level understanding is still largely lacking. In this study, we analyse long-term aerosol data measured at an observatory established in Hanimaadhoo, Republic of Maldives, to investigate the long-term properties of aerosols over the Indian Ocean as well as to understand the effect of precipitation on the aerosol particle size distribution during long-range transport. The observatory location is ideal because it is a receptor site with little local influence, and, depending on the season, receives either polluted air masses coming from the Indian subcontinent or clean marine air masses from the Indian Ocean. We analysed the sub-micron particle number size distribution measured during the years 2004-2008, and 2014-2017, and this is the first inter-seasonal long-term study of the sub-micron aerosol features in the region. The aerosol origin and its relative exposure to wet scavenging during long-range transport were analysed using back-trajectory analysis from HYSPLIT. By comparing aerosol measurements to precipitation along its transport, this study shows that there is a substantial change in particle number size distributions and concentrations depending on the amount of rainfall during transport. During the southwest monsoon season, the aerosol size distribution was notably bimodal and total particle concentrations clearly reduced in comparison with the prevailing aerosol size distribution during the northeast monsoon season. Precipitation during transport usually corresponded with a greater reduction in accumulation mode concentrations than for smaller sizes, and the shape of the median size distribution showed a clear dependence on the trajectory origin and route taken.
  •  
4.
  • Laj, Paolo, et al. (författare)
  • A global analysis of climate-relevant aerosol properties retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories
  • 2020
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 13:8, s. 4353-4392
  • Tidskriftsartikel (refereegranskat)abstract
    • Aerosol particles are essential constituents of the Earth's atmosphere, impacting the earth radiation balance directly by scattering and absorbing solar radiation, and indirectly by acting as cloud condensation nuclei. In contrast to most greenhouse gases, aerosol particles have short atmospheric residence times, resulting in a highly heterogeneous distribution in space and time. There is a clear need to document this variability at regional scale through observations involving, in particular, the in situ near-surface segment of the atmospheric observation system. This paper will provide the widest effort so far to document variability of climate-relevant in situ aerosol properties (namely wavelength dependent particle light scattering and absorption coefficients, particle number concentration and particle number size distribution) from all sites connected to the Global Atmosphere Watch network. High-quality data from almost 90 stations worldwide have been collected and controlled for quality and are reported for a reference year in 2017, providing a very extended and robust view of the variability of these variables worldwide. The range of variability observed worldwide for light scattering and absorption coefficients, single-scattering albedo, and particle number concentration are presented together with preliminary information on their long-term trends and comparison with model simulation for the different stations. The scope of the present paper is also to provide the necessary suite of information, including data provision procedures, quality control and analysis, data policy, and usage of the ground-based aerosol measurement network. It delivers to users of the World Data Centre on Aerosol, the required confidence in data products in the form of a fully characterized value chain, including uncertainty estimation and requirements for contributing to the global climate monitoring system.
  •  
5.
  • Ohata, Sho, et al. (författare)
  • Estimates of mass absorption cross sections of black carbon for filter-based absorption photometers in the Arctic
  • 2021
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 14:10, s. 6723-6748
  • Tidskriftsartikel (refereegranskat)abstract
    • Long-term measurements of atmospheric mass concentrations of black carbon (BC) are needed to investigate changes in its emission, transport, and deposition. However, depending on instrumentation, parameters related to BC such as aerosol absorption coefficient (babs) have been measured instead. Most ground-based measurements of babs in the Arctic have been made by filter-based absorption photometers, including particle soot absorption photometers (PSAPs), continuous light absorption photometers (CLAPs), Aethalometers, and multi-angle absorption photometers (MAAPs). The measured babs can be converted to mass concentrations of BC (MBC) by assuming the value of the mass absorption cross section (MAC; MBC= babs/ MAC). However, the accuracy of conversion of babs to MBC has not been adequately assessed. Here, we introduce a systematic method for deriving MAC values from babs measured by these instruments and independently measured MBC. In this method, MBC was measured with a filter-based absorption photometer with a heated inlet (COSMOS). COSMOS-derived MBC (MBC (COSMOS)) is traceable to a rigorously calibrated single particle soot photometer (SP2), and the absolute accuracy of MBC (COSMOS) has been demonstrated previously to be about 15 % in Asia and the Arctic. The necessary conditions for application of this method are a high correlation of the measured babs with independently measured MBC and long-term stability of the regression slope, which is denoted as MACcor (MAC derived from the correlation). In general, babs–MBC (COSMOS) correlations were high (r2= 0.76–0.95 for hourly data) at Alert in Canada, Ny-Ålesund in Svalbard, Barrow (NOAA Barrow Observatory) in Alaska, Pallastunturi in Finland, and Fukue in Japan and stable for up to 10 years. We successfully estimated MACcor values (10.8–15.1 m2 g−1 at a wavelength of 550 nm for hourly data) for these instruments, and these MACcor values can be used to obtain error-constrained estimates of MBC from babs measured at these sites even in the past, when COSMOS measurements were not made. Because the absolute values of MBC at these Arctic sites estimated by this method are consistent with each other, they are applicable to the study of spatial and temporal variation in MBC in the Arctic and to evaluation of the performance of numerical model calculations.
  •  
6.
  • Ström, Johan, et al. (författare)
  • Snow albedo and its sensitivity to changes in deposited light-absorbing particles estimated from ambient temperature and snow depth observations at a high-altitude site in the Himalaya 
  • 2022
  • Ingår i: Elementa. - : University of California Press. - 2325-1026. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Snow darkening by deposited light-absorbing particles (LAP) accelerates snowmelt and shifts the snow melt-out date (MOD). Here, we present a simple approach to estimate the snow albedo variability due to LAP deposition and test this method with data for 2 seasons (February–May 2016 and December 2016–June 2017) at a high-altitude valley site in the Central Himalayas, India. We derive a parameterization for the snow albedo that only depends on the daily observations of average ambient temperature and change in snow depth, as well as an assumed average concentration of LAP in snow precipitation. Linear regression between observed and parameterized albedo for the base case assuming an equivalent elemental carbon concentration [ECeq] of 100 ng g–1 in snow precipitation yields a slope of 0.75 and a Pearson correlation coefficient r2 of 0.76. However, comparing the integrated amount of shortwave radiation absorbed during the winter season using observed albedo versus base case albedo resulted in rather small differences of 11% and 4% at the end of Seasons 1 and 2, respectively. The enhanced energy absorbed due to LAP at the end of the 2 seasons for the base case scenario (assuming an [ECeq] of 100 ng g–1 in snow precipitation) was 40% and 36% compared to pristine snow. A numerical evaluation with different assumed [ECeq] in snow precipitation suggests that the relative sensitivity of snow albedo to changes in [ECeq] remains rather constant for the 2 seasons. Doubling [ECeq] augments the absorption by less than 20%, highlighting that the impact on a MOD is small even for a doubling of average LAP in snow precipitation. 
  •  
7.
  • Ström, Johan, 1963-, et al. (författare)
  • Snow cover duration in northern Finland and the influence of key variables through a conceptual framework based on observed variations in snow depth
  • 2023
  • Ingår i: Science of the Total Environment. - 0048-9697 .- 1879-1026. ; 903
  • Tidskriftsartikel (refereegranskat)abstract
    • Seasonal snow cover duration is the net result from many processes acting on snow fallen on the Earth's surface. Several of these processes feed back into the atmosphere-cryosphere system causing non-linear interactions. The timing of snow retreat is of essential importance, but the duration of snow cover has large spatiotemporal variabilities. However, from a large data set of observed snow depth changes in northern Finland, systematic similar evolutions are identified that allow for a considerable simplification and reduction of the complexity in snow depth changes. Here, a novel conceptual framework is designed based on dividing the season into two main periods (dark and bright period, based on solar irradiance), for which snow depth decrease is parameterized based on three variables, average temperature, incoming shortwave radiation, and light-absorbing particles (LAP) in the snow. The processes are simplified into two linear relations, and a new formulation for concentration enhancement of LAP, which is dependent on snow depth decrease, is given. The results show that the seasonal snow cover duration is shifted by about one day for every 10 mm snow water equivalent of precipitation. This effect is comparable in scale to that of doubling of the amount of LAP concentration in snow. We also found that the combined shift in snow cover duration from interannual variability in ambient temperature and shortwave radiation (warm and bright vs. cold and dark season) is large enough to explain the variability of a couple of weeks for a given precipitation amount in Northern Finland.
  •  
8.
  • Svensson, Jonas, et al. (författare)
  • Deposition of light-absorbing particles in glacier snow of the Sunderdhunga Valley, the southern forefront of the central Himalayas
  • 2021
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 21:4, s. 2931-2943
  • Tidskriftsartikel (refereegranskat)abstract
    • Anthropogenic activities on the Indo-Gangetic Plain emit vast amounts of light-absorbing particles (LAPs) into the atmosphere, modifying the atmospheric radiation state. With transport to the nearby Himalayas and deposition to its surfaces the particles contribute to glacier melt and snowmelt via darkening of the highly reflective snow. The central Himalayas have been identified as a region where LAPs are especially pronounced in glacier snow but still remain a region where measurements of LAPs in the snow are scarce. Here we study the deposition of LAPs in five snow pits sampled in 2016 (and one from 2015) within 1 km from each other from two glaciers in the Sunderdhunga Valley, in the state of Uttarakhand, India, in the central Himalayas. The snow pits display a distinct enriched LAP layer interleaved by younger snow above and older snow below. The LAPs exhibit a distinct vertical distribution in these different snow layers. For the analyzed elemental carbon (EC), the younger snow layers in the different pits show similarities, which can be characterized by a deposition constant of about 50 µg m−2 mm−1 snow water equivalent (SWE), while the old-snow layers also indicate similar values, described by a deposition constant of roughly 150 µg m−2 mm−1 SWE. The enriched LAP layer, contrarily, displays no similar trends between the pits. Instead, it is characterized by very high amounts of LAPs and differ in orders of magnitude for concentration between the pits. The enriched LAP layer is likely a result of strong melting that took place during the summers of 2015 and 2016, as well as possible lateral transport of LAPs. The mineral dust fractional absorption is slightly below 50 % for the young- and old-snow layers, whereas it is the dominating light-absorbing constituent in the enriched LAP layer, thus, highlighting the importance of dust in the region. Our results indicate the problems with complex topography in the Himalayas but, nonetheless, can be useful in large-scale assessments of LAPs in Himalayan snow.
  •  
9.
  • Svensson, Jonas, et al. (författare)
  • Soot-on-snow experiment : artificial deposition of light-absorbing particles onto snow surfaces in 2018
  • 2024
  • Ingår i: Frontiers in Earth Science. - 2296-6463. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • The absorption of shortwave irradiance in snow depends on the physical properties of snow (e.g., snow grain size and shape, liquid water content, etc.) and light-absorbing particles (LAP). Originating from natural and anthropogenic sources, LAP has been reported to accelerate snowmelt significantly in different regions globally. Yet, our process-level understanding of LAP after deposition onto snow remains rather limited. Here we investigate the impacts of artificial deposition of different LAP onto snow surfaces in an outdoor environment of northern Finland. Following LAP dry deposition into a custom-made tent standing on top of the snowpack, the albedo was followed along with the properties of snow in snow pit measurements throughout the spring season. The results showed that the albedo decay at the end of the season for the different spots were linked to the initial amount and type of LAP that were deposited onto the snowpack. Measured snow temperature profiles from LAP doped snow versus natural reference snow illustrated that the LAP affected snow had higher temperatures in the subsurface snow layers. Collected snow samples analyzed for size distribution of soot particles revealed no apparent agglomeration of soot particles during thaw-freezing events taking place during the experiment. Despite the relatively large perturbation of the experimentally deposited LAP, their impact on the season length was only up to 3 days. Additional experiments are, nevertheless, needed to better constrain the effects of LAP on snow albedo, melt rate, and other associated processes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy