SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Astrid H) srt2:(2020-2024)"

Sökning: WFRF:(Astrid H) > (2020-2024)

  • Resultat 1-10 av 47
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Reinert, Line S, et al. (författare)
  • Brain immune cells undergo cGAS-STING-dependent apoptosis during herpes simplex virus type 1 infection.
  • 2020
  • Ingår i: The Journal of clinical investigation. - 1558-8238. ; 131:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Protection of the brain from viral infections involves the type I interferon (IFN-I) system, defects in which renders humans susceptible to herpes simplex encephalitis (HSE). However, excessive cerebral IFN-I levels leads to pathologies, suggesting the need for tight regulation of responses. Based on data from mouse models, human HSE cases, and primary cell culture systems, we here show that microglia and other immune cells undergo apoptosis in the HSV-1-infected brain through a mechanism dependent on the cyclic GMP-AMP synthase (cGAS) - stimulator of interferon genes (STING) pathway, but independent of IFN-I. HSV-1 infection of microglia induced cGAS-dependent apoptosis at high viral doses, while lower viral doses led to IFN-I responses. Importantly, inhibition of caspase activity prevented microglial cell death and augmented IFN-I responses. Accordingly, HSV-1-infected organotypic brain slices, or mice treated with caspase inhibitor, exhibited lower viral load and improved outcome of infection. Collectively, we identify an activation-induced apoptosis program in brain immune cells which down-modulates local immune responses.
  •  
2.
  • Van Wijk, Rob C., 1991-, et al. (författare)
  • Quantification of Natural Growth of Two Strains of Mycobacterium Marinum for Translational Antituberculosis Drug Development
  • 2020
  • Ingår i: Clinical and Translational Science. - : Wiley. - 1752-8054 .- 1752-8062. ; 13:6, s. 1060-1064
  • Tidskriftsartikel (refereegranskat)abstract
    • The zebrafish infected with Mycobacterium marinum (M. marinum) is an attractive tuberculosis disease model, showing similar pathogenesis to Mycobacterium tuberculosis (M. tuberculosis) infections in humans. To translate pharmacological findings from this disease model to higher vertebrates, a quantitative understanding of the natural growth of M. marinum in comparison to the natural growth of M. tuberculosis is essential. Here, the natural growth of two strains of M. marinum, E11 and MUSA, is studied over an extended period using an established model‐based approach, the multistate tuberculosis pharmacometric (MTP) model, for comparison to that of M. tuberculosis. Poikilotherm‐derived strain E11 and human‐derived strain MUSA were grown undisturbed up to 221 days and viability of cultures (colony forming unit (CFU)/mL) was determined by plating at different time points. Nonlinear mixed effects modeling using the MTP model quantified the bacterial growth, the transfer among fast, slow, and non‐multiplying states, and the inoculi. Both strains showed initial logistic growth, reaching a maximum after 20–25 days for E11 and MUSA, respectively, followed by a decrease to a new plateau. Natural growth of both E11 and MUSA was best described with Gompertz growth functions. For E11, the inoculum was best described in the slow‐multiplying state, for MUSA in the fast‐multiplying state. Natural growth of E11 was most similar to that of M. tuberculosis, whereas MUSA showed more aggressive growth behavior. Characterization of natural growth of M. marinum and quantitative comparison with M. tuberculosis brings the zebrafish tuberculosis disease model closer to the quantitative translational pipeline of antituberculosis drug development.
  •  
3.
  • de las Fuentes, Lisa, et al. (författare)
  • Gene-educational attainment interactions in a multi-ancestry genome-wide meta-analysis identify novel blood pressure loci
  • 2021
  • Ingår i: Molecular Psychiatry. - : Springer Nature. - 1359-4184 .- 1476-5578. ; 26:6, s. 2111-2125
  • Tidskriftsartikel (refereegranskat)abstract
    • Educational attainment is widely used as a surrogate for socioeconomic status (SES). Low SES is a risk factor for hypertension and high blood pressure (BP). To identify novel BP loci, we performed multi-ancestry meta-analyses accounting for gene-educational attainment interactions using two variables, “Some College” (yes/no) and “Graduated College” (yes/no). Interactions were evaluated using both a 1 degree of freedom (DF) interaction term and a 2DF joint test of genetic and interaction effects. Analyses were performed for systolic BP, diastolic BP, mean arterial pressure, and pulse pressure. We pursued genome-wide interrogation in Stage 1 studies (N = 117 438) and follow-up on promising variants in Stage 2 studies (N = 293 787) in five ancestry groups. Through combined meta-analyses of Stages 1 and 2, we identified 84 known and 18 novel BP loci at genome-wide significance level (P < 5 × 10-8). Two novel loci were identified based on the 1DF test of interaction with educational attainment, while the remaining 16 loci were identified through the 2DF joint test of genetic and interaction effects. Ten novel loci were identified in individuals of African ancestry. Several novel loci show strong biological plausibility since they involve physiologic systems implicated in BP regulation. They include genes involved in the central nervous system-adrenal signaling axis (ZDHHC17, CADPS, PIK3C2G), vascular structure and function (GNB3, CDON), and renal function (HAS2 and HAS2-AS1, SLIT3). Collectively, these findings suggest a role of educational attainment or SES in further dissection of the genetic architecture of BP.
  •  
4.
  • Forslund, Sofia K., et al. (författare)
  • Combinatorial, additive and dose-dependent drug–microbiome associations
  • 2021
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 600:7889, s. 500-505
  • Tidskriftsartikel (refereegranskat)abstract
    • During the transition from a healthy state to cardiometabolic disease, patients become heavily medicated, which leads to an increasingly aberrant gut microbiome and serum metabolome, and complicates biomarker discovery1–5. Here, through integrated multi-omics analyses of 2,173 European residents from the MetaCardis cohort, we show that the explanatory power of drugs for the variability in both host and gut microbiome features exceeds that of disease. We quantify inferred effects of single medications, their combinations as well as additive effects, and show that the latter shift the metabolome and microbiome towards a healthier state, exemplified in synergistic reduction in serum atherogenic lipoproteins by statins combined with aspirin, or enrichment of intestinal Roseburia by diuretic agents combined with beta-blockers. Several antibiotics exhibit a quantitative relationship between the number of courses prescribed and progression towards a microbiome state that is associated with the severity of cardiometabolic disease. We also report a relationship between cardiometabolic drug dosage, improvement in clinical markers and microbiome composition, supporting direct drug effects. Taken together, our computational framework and resulting resources enable the disentanglement of the effects of drugs and disease on host and microbiome features in multimedicated individuals. Furthermore, the robust signatures identified using our framework provide new hypotheses for drug–host–microbiome interactions in cardiometabolic disease.
  •  
5.
  • Irving-Pease, Evan K., et al. (författare)
  • The selection landscape and genetic legacy of ancient Eurasians
  • 2024
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 625, s. 312-320
  • Tidskriftsartikel (refereegranskat)abstract
    • The Holocene (beginning around 12,000 years ago) encompassed some of the most significant changes in human evolution, with far-reaching consequences for the dietary, physical and mental health of present-day populations. Using a dataset of more than 1,600 imputed ancient genomes 1, we modelled the selection landscape during the transition from hunting and gathering, to farming and pastoralism across West Eurasia. We identify key selection signals related to metabolism, including that selection at the FADS cluster began earlier than previously reported and that selection near the LCT locus predates the emergence of the lactase persistence allele by thousands of years. We also find strong selection in the HLA region, possibly due to increased exposure to pathogens during the Bronze Age. Using ancient individuals to infer local ancestry tracts in over 400,000 samples from the UK Biobank, we identify widespread differences in the distribution of Mesolithic, Neolithic and Bronze Age ancestries across Eurasia. By calculating ancestry-specific polygenic risk scores, we show that height differences between Northern and Southern Europe are associated with differential Steppe ancestry, rather than selection, and that risk alleles for mood-related phenotypes are enriched for Neolithic farmer ancestry, whereas risk alleles for diabetes and Alzheimer’s disease are enriched for Western hunter-gatherer ancestry. Our results indicate that ancient selection and migration were large contributors to the distribution of phenotypic diversity in present-day Europeans.
  •  
6.
  • Kjær, Kurt H., et al. (författare)
  • A 2-million-year-old ecosystem in Greenland uncovered by environmental DNA
  • 2022
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 612:7939, s. 283-291
  • Tidskriftsartikel (refereegranskat)abstract
    • Late Pliocene and Early Pleistocene epochs 3.6 to 0.8 million years ago1 had climates resembling those forecasted under future warming2. Palaeoclimatic records show strong polar amplification with mean annual temperatures of 11–19 °C above contemporary values3,4. The biological communities inhabiting the Arctic during this time remain poorly known because fossils are rare5. Here we report an ancient environmental DNA6 (eDNA) record describing the rich plant and animal assemblages of the Kap København Formation in North Greenland, dated to around two million years ago. The record shows an open boreal forest ecosystem with mixed vegetation of poplar, birch and thuja trees, as well as a variety of Arctic and boreal shrubs and herbs, many of which had not previously been detected at the site from macrofossil and pollen records. The DNA record confirms the presence of hare and mitochondrial DNA from animals including mastodons, reindeer, rodents and geese, all ancestral to their present-day and late Pleistocene relatives. The presence of marine species including horseshoe crab and green algae support a warmer climate than today. The reconstructed ecosystem has no modern analogue. The survival of such ancient eDNA probably relates to its binding to mineral surfaces. Our findings open new areas of genetic research, demonstrating that it is possible to track the ecology and evolution of biological communities from two million years ago using ancient eDNA.
  •  
7.
  • Molinaro, Antonio, et al. (författare)
  • Imidazole propionate is increased in diabetes and associated with dietary patterns and altered microbial ecology
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Microbiota-host-diet interactions contribute to the development of metabolic diseases. Imidazole propionate is a novel microbially produced metabolite from histidine, which impairs glucose metabolism. Here, we show that subjects with prediabetes and diabetes in the MetaCardis cohort from three European countries have elevated serum imidazole propionate levels. Furthermore, imidazole propionate levels were increased in subjects with low bacterial gene richness and Bacteroides 2 enterotype, which have previously been associated with obesity. The Bacteroides 2 enterotype was also associated with increased abundance of the genes involved in imidazole propionate biosynthesis from dietary histidine. Since patients and controls did not differ in their histidine dietary intake, the elevated levels of imidazole propionate in type 2 diabetes likely reflects altered microbial metabolism of histidine, rather than histidine intake per se. Thus the microbiota may contribute to type 2 diabetes by generating imidazole propionate that can modulate host inflammation and metabolism.
  •  
8.
  • Muus, Christoph, et al. (författare)
  • Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics
  • 2021
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 27:3, s. 546-559
  • Tidskriftsartikel (refereegranskat)abstract
    • Angiotensin-converting enzyme 2 (ACE2) and accessory proteases (TMPRSS2 and CTSL) are needed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cellular entry, and their expression may shed light on viral tropism and impact across the body. We assessed the cell-type-specific expression of ACE2, TMPRSS2 and CTSL across 107 single-cell RNA-sequencing studies from different tissues. ACE2, TMPRSS2 and CTSL are coexpressed in specific subsets of respiratory epithelial cells in the nasal passages, airways and alveoli, and in cells from other organs associated with coronavirus disease 2019 (COVID-19) transmission or pathology. We performed a meta-analysis of 31 lung single-cell RNA-sequencing studies with 1,320,896 cells from 377 nasal, airway and lung parenchyma samples from 228 individuals. This revealed cell-type-specific associations of age, sex and smoking with expression levels of ACE2, TMPRSS2 and CTSL. Expression of entry factors increased with age and in males, including in airway secretory cells and alveolar type 2 cells. Expression programs shared by ACE2(+)TMPRSS2(+) cells in nasal, lung and gut tissues included genes that may mediate viral entry, key immune functions and epithelial-macrophage cross-talk, such as genes involved in the interleukin-6, interleukin-1, tumor necrosis factor and complement pathways. Cell-type-specific expression patterns may contribute to the pathogenesis of COVID-19, and our work highlights putative molecular pathways for therapeutic intervention. An integrated analysis of over 100 single-cell and single-nucleus transcriptomics studies illustrates severe acute respiratory syndrome coronavirus 2 viral entry gene coexpression patterns across different human tissues, and shows association of age, smoking status and sex with viral entry gene expression in respiratory cell populations.
  •  
9.
  • Pélabon, Christophe, et al. (författare)
  • Is There More to Within-plant Variation in Seed Size than Developmental Noise?
  • 2021
  • Ingår i: Evolutionary Biology. - : Springer Science and Business Media LLC. - 0071-3260 .- 1934-2845. ; 48:3, s. 366-377
  • Tidskriftsartikel (refereegranskat)abstract
    • Within-plant variation in seed size may merely reflect developmental instability, or it may be adaptive in facilitating diversifying bet-hedging, that is, production of phenotypically diverse offspring when future environments are unpredictable. To test the latter hypothesis, we analyzed patterns of variation in seed size in 11 populations of the perennial vine Dalechampia scandens grown in a common greenhouse environment. We tested whether population differences in the mean and variation of seed size covaried with environmental predictability at two different timescales. We also tested whether within-plant variation in seed size was correlated with independent measures of floral developmental instability and increased under stressful conditions. Populations differed genetically in the amount of seed-size variation occurring among plants, among infructescences within plants, and among seeds within infructescences. Within-individual variation was not detectably correlated with measures of developmental instability and did not increase under stress, but it increased weakly with short-term environmental unpredictability of precipitation at the source-population site. These results support the hypothesis that greater variation in seed size is adaptive when environmental predictability is low.
  •  
10.
  • Andrikopoulos, Petros, et al. (författare)
  • Evidence of a causal and modifiable relationship between kidney function and circulating trimethylamine N-oxide
  • 2023
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The host-microbiota co-metabolite trimethylamine N-oxide (TMAO) is linked to increased cardiovascular risk but how its circulating levels are regulated remains unclear. We applied "explainable" machine learning, univariate, multivariate and mediation analyses of fasting plasma TMAO concentration and a multitude of phenotypes in 1,741 adult Europeans of the MetaCardis study. Here we show that next to age, kidney function is the primary variable predicting circulating TMAO, with microbiota composition and diet playing minor, albeit significant, roles. Mediation analysis suggests a causal relationship between TMAO and kidney function that we corroborate in preclinical models where TMAO exposure increases kidney scarring. Consistent with our findings, patients receiving glucose-lowering drugs with reno-protective properties have significantly lower circulating TMAO when compared to propensity-score matched control individuals. Our analyses uncover a bidirectional relationship between kidney function and TMAO that can potentially be modified by reno-protective anti-diabetic drugs and suggest a clinically actionable intervention for decreasing TMAO-associated excess cardiovascular risk.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 47
Typ av publikation
tidskriftsartikel (34)
konferensbidrag (6)
forskningsöversikt (2)
samlingsverk (redaktörskap) (1)
rapport (1)
bok (1)
visa fler...
doktorsavhandling (1)
bokkapitel (1)
visa färre...
Typ av innehåll
refereegranskat (39)
övrigt vetenskapligt/konstnärligt (6)
populärvet., debatt m.m. (2)
Författare/redaktör
Nilsson, Astrid M. H ... (9)
Nielsen, Jens B, 196 ... (3)
Bäckhed, Fredrik, 19 ... (3)
Collet, Jean-Philipp ... (3)
Hansen, Torben (3)
Montalescot, Gilles (3)
visa fler...
Clement, K (3)
Vestergaard, H. (3)
Bork, Peer (3)
Køber, Lars (3)
Forslund, Sofia K. (3)
Nielsen, Trine (3)
Adriouch, Solia (3)
Chilloux, J. (3)
Vieira-Silva, Sara (3)
Falony, Gwen (3)
Salem, Joe-Elie (3)
Andreelli, Fabrizio (3)
Belda, Eugeni (3)
Le Chatelier, Emmanu ... (3)
Alves, Renato (3)
Helft, Gerard (3)
Isnard, Richard (3)
Coelho, Luis P. (3)
Rouault, Christine (3)
Gøtze, Jens P. (3)
Prifti, Edi (3)
Barthelemy, Olivier (3)
Bastard, Jean-Philli ... (3)
Batisse, Jean-Paul (3)
Berland, Magalie (3)
Bittar, Randa (3)
Blottière, Hervé (3)
Bosquet, Frederic (3)
Boubrit, Rachid (3)
Bourron, Olivier (3)
Camus, Mickael (3)
Ciangura, Cecile (3)
Djebbar, Morad (3)
Doré, Angélique (3)
Engelbrechtsen, Line (3)
Fezeu, Leopold (3)
Fromentin, Sebastien (3)
Pons, Nicolas (3)
Hartemann, Agnes (3)
Hornbak, Malene (3)
Jaqueminet, Sophie (3)
Jørgensen, Niklas Ry ... (3)
Julienne, Hanna (3)
Justesen, Johanne (3)
visa färre...
Lärosäte
Lunds universitet (15)
Göteborgs universitet (9)
Uppsala universitet (9)
Umeå universitet (5)
Karolinska Institutet (5)
Stockholms universitet (4)
visa fler...
Chalmers tekniska högskola (4)
Sveriges Lantbruksuniversitet (3)
Linköpings universitet (2)
Kungliga Tekniska Högskolan (1)
Örebro universitet (1)
Handelshögskolan i Stockholm (1)
Linnéuniversitetet (1)
visa färre...
Språk
Engelska (43)
Svenska (4)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (21)
Naturvetenskap (14)
Humaniora (11)
Samhällsvetenskap (3)
Lantbruksvetenskap (2)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy