SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Auer Daniel) srt2:(2010-2014)"

Sökning: WFRF:(Auer Daniel) > (2010-2014)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Peloso, Gina M, et al. (författare)
  • Association of low-frequency and rare coding-sequence variants with blood lipids and coronary heart disease in 56,000 whites and blacks.
  • 2014
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297. ; 94:2, s. 223-232
  • Tidskriftsartikel (refereegranskat)abstract
    • Low-frequency coding DNA sequence variants in the proprotein convertase subtilisin/kexin type 9 gene (PCSK9) lower plasma low-density lipoprotein cholesterol (LDL-C), protect against risk of coronary heart disease (CHD), and have prompted the development of a new class of therapeutics. It is uncertain whether the PCSK9 example represents a paradigm or an isolated exception. We used the "Exome Array" to genotype >200,000 low-frequency and rare coding sequence variants across the genome in 56,538 individuals (42,208 European ancestry [EA] and 14,330 African ancestry [AA]) and tested these variants for association with LDL-C, high-density lipoprotein cholesterol (HDL-C), and triglycerides. Although we did not identify new genes associated with LDL-C, we did identify four low-frequency (frequencies between 0.1% and 2%) variants (ANGPTL8 rs145464906 [c.361C>T; p.Gln121(∗)], PAFAH1B2 rs186808413 [c.482C>T; p.Ser161Leu], COL18A1 rs114139997 [c.331G>A; p.Gly111Arg], and PCSK7 rs142953140 [c.1511G>A; p.Arg504His]) with large effects on HDL-C and/or triglycerides. None of these four variants was associated with risk for CHD, suggesting that examples of low-frequency coding variants with robust effects on both lipids and CHD will be limited.
  •  
2.
  • Lange, Leslie A, et al. (författare)
  • Whole-Exome Sequencing Identifies Rare and Low-Frequency Coding Variants Associated with LDL Cholesterol.
  • 2014
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297. ; 94:2, s. 233-245
  • Tidskriftsartikel (refereegranskat)abstract
    • Elevated low-density lipoprotein cholesterol (LDL-C) is a treatable, heritable risk factor for cardiovascular disease. Genome-wide association studies (GWASs) have identified 157 variants associated with lipid levels but are not well suited to assess the impact of rare and low-frequency variants. To determine whether rare or low-frequency coding variants are associated with LDL-C, we exome sequenced 2,005 individuals, including 554 individuals selected for extreme LDL-C (>98(th) or <2(nd) percentile). Follow-up analyses included sequencing of 1,302 additional individuals and genotype-based analysis of 52,221 individuals. We observed significant evidence of association between LDL-C and the burden of rare or low-frequency variants in PNPLA5, encoding a phospholipase-domain-containing protein, and both known and previously unidentified variants in PCSK9, LDLR and APOB, three known lipid-related genes. The effect sizes for the burden of rare variants for each associated gene were substantially higher than those observed for individual SNPs identified from GWASs. We replicated the PNPLA5 signal in an independent large-scale sequencing study of 2,084 individuals. In conclusion, this large whole-exome-sequencing study for LDL-C identified a gene not known to be implicated in LDL-C and provides unique insight into the design and analysis of similar experiments.
  •  
3.
  • Rönnlund, Daniel, et al. (författare)
  • Fluorescence Nanoscopy of Platelets Resolves Platelet-State Specific Storage, Release and Uptake of Proteins, Opening up Future Diagnostic Applications
  • 2012
  • Ingår i: Advanced Healthcare Materials. - : Wiley-Blackwell. - 2192-2640 .- 2192-2659. ; 1:6, s. 707-713
  • Tidskriftsartikel (refereegranskat)abstract
    • Dysregulation of how platelets store, sequester and release specific proteins seems to be implicated in many disease states, including cancer. Dual-color immunofluorescence stimulated emission depletion (STED) microscopy with 40 nm resolution is used to map pro-angiogenic VEGF, anti-angiogenic PF-4 and fibrinogen in >300 individual platelets. This reveals that these proteins are stored in a segmented, zonal manner within regional clusters, significantly smaller than the size of an alpha-granule. No colocalization between the different proteins is observed. Upon platelet activation by thrombin or ADP, the proteins undergo significant spatial rearrangements, including alterations in the size and number of the protein clusters, and specific for a certain protein and the type of activation induced. Following these observations, a simple assignment procedure is used to show that the three distinct states of platelets (non-, ADP- and thrombin-activated) can be identified based on the average size, number and peripheral localization profiles of the regional protein clusters within the platelets. Thus, high-resolution spatial mapping of specific proteins is a useful procedure to detect and characterize deviations in the selective storage, release and uptake of these proteins in the platelets. Since these deviations seem to be specific for, and may even underlie, certain patophysiological states, these findings may have interesting diagnostic and therapeutic implications.
  •  
4.
  • Rönnlund, Daniel, 1984-, et al. (författare)
  • Multicolor Fluorescence Nanoscopy by Photobleaching : Concept Verification and its Application to Resolve Selective Storage of Proteins in Platelets
  • 2014
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 8:5, s. 4358-4365
  • Tidskriftsartikel (refereegranskat)abstract
    • Fluorescence nanoscopy provides means to discernthe finer details of protein localization and interaction in cells by offeringan order of magnitude higher resolution than conventional optical imagingtechniques. However, these super resolution techniques put higher demands onthe optical system as well as on the fluorescent probes, making multicolorfluorescence nanoscopy a challenging task. Here we present a new and simpleprocedure which exploits the photostability and excitation spectra of dyes toincrease the number of simultaneous recordable targets in STED nanoscopy. Weuse this procedure to demonstrate four color STED imaging of platelets with ≤40 nm resolution and low crosstalk. Platelets can selectively store, sequesterand release a multitude of different proteins, and in a manner specific fordifferent physiological and disease states. By applying multicolor nanoscopy tostudy platelets, we can achieve spatial mapping of the protein organizationwith a high resolution, for multiple proteins at the same time and in the samecell. This provides a means to identify specific platelet activation states fordiagnostic purposes and to understand the underlying protein storage andrelease mechanisms. We studied the organization of the pro- and anti-angiogenicproteins VEGF and PF-4 together with fibrinogen and filamentous actin, andfound distinct features in their respective protein localization. Further,colocalization analysis revealed only minor overlap between the proteins VEGFand PF-4 indicating that they have separate storage and release mechanisms,corresponding well with their opposite rules as pro- and anti-angiogenicproteins, respectively.
  •  
5.
  • Stitziel, Nathan O, et al. (författare)
  • Exome Sequencing and Directed Clinical Phenotyping Diagnose Cholesterol Ester Storage Disease Presenting as Autosomal Recessive Hypercholesterolemia.
  • 2013
  • Ingår i: Arteriosclerosis, Thrombosis and Vascular Biology. - 1524-4636. ; 33:12, s. 2909-2914
  • Tidskriftsartikel (refereegranskat)abstract
    • Autosomal recessive hypercholesterolemia is a rare inherited disorder, characterized by extremely high total and low-density lipoprotein cholesterol levels, that has been previously linked to mutations in LDLRAP1. We identified a family with autosomal recessive hypercholesterolemia not explained by mutations in LDLRAP1 or other genes known to cause monogenic hypercholesterolemia. The aim of this study was to identify the molecular pathogenesis of autosomal recessive hypercholesterolemia in this family.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy