SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Aung Nay) srt2:(2023)"

Sökning: WFRF:(Aung Nay) > (2023)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chadalavada, Sucharitha, et al. (författare)
  • Diabetes and heart failure associations in women and men : Results from the MORGAM consortium
  • 2023
  • Ingår i: Frontiers in Cardiovascular Medicine. - 2297-055X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Diabetes and its cardiovascular complications are a growing concern worldwide. Recently, some studies have demonstrated that relative risk of heart failure (HF) is higher in women with type 1 diabetes (T1DM) than in men. This study aims to validate these findings in cohorts representing five countries across Europe.Methods: This study includes 88,559 (51.8% women) participants, 3,281 (46.3% women) of whom had diabetes at baseline. Survival analysis was performed with the outcomes of interest being death and HF with a follow-up time of 12 years. Sub-group analysis according to sex and type of diabetes was also performed for the HF outcome.Results: 6,460 deaths were recorded, of which 567 were amongst those with diabetes. Additionally, HF was diagnosed in 2,772 individuals (446 with diabetes). A multivariable Cox proportional hazard analysis showed that there was an increased risk of death and HF (hazard ratio (HR) of 1.73 [1.58–1.89] and 2.12 [1.91–2.36], respectively) when comparing those with diabetes and those without. The HR for HF was 6.72 [2.75–16.41] for women with T1DM vs. 5.80 [2.72–12.37] for men with T1DM, but the interaction term for sex differences was insignificant (p for interaction 0.45). There was no significant difference in the relative risk of HF between men and women when both types of diabetes were combined (HR 2.22 [1.93–2.54] vs. 1.99 [1.67–2.38] respectively, p for interaction 0.80).Conclusion: Diabetes is associated with increased risks of death and heart failure, and there was no difference in relative risk according to sex.
  •  
2.
  • Laudette, Marion, et al. (författare)
  • Cardiomyocyte-specific PCSK9 deficiency compromises mitochondrial bioenergetics and heart function
  • 2023
  • Ingår i: Cardiovascular Research. - : Oxford University Press (OUP). - 0008-6363 .- 1755-3245. ; 119:7, s. 1537-1552
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims Pro-protein convertase subtilisin-kexin type 9 (PCSK9), which is expressed mainly in the liver and at low levels in the heart, regulates cholesterol levels by directing low-density lipoprotein receptors to degradation. Studies to determine the role of PCSK9 in the heart are complicated by the close link between cardiac function and systemic lipid metabolism. Here, we sought to elucidate the function of PCSK9 specifically in the heart by generating and analysing mice with cardiomyocyte-specific Pcsk9 deficiency (CMPcsk9−/− mice) and by silencing Pcsk9 acutely in a cell culture model of adult cardiomyocyte-like cells. Methods and results Mice with cardiomyocyte-specific deletion of Pcsk9 had reduced contractile capacity, impaired cardiac function, and left ventricular dilatation at 28 weeks of age and died prematurely. Transcriptomic analyses revealed alterations of signalling pathways linked to cardiomyopathy and energy metabolism in hearts from CM-Pcsk9−/− mice vs. wild-type littermates. In agreement, levels of genes and proteins involved in mitochondrial metabolism were reduced in CM-Pcsk9−/− hearts. By using a Seahorse flux analyser, we showed that mitochondrial but not glycolytic function was impaired in cardiomyocytes from CM-Pcsk9−/− mice. We further showed that assembly and activity of electron transport chain (ETC) complexes were altered in isolated mitochondria from CM-Pcsk9−/− mice. Circulating lipid levels were unchanged in CM-Pcsk9−/− mice, but the lipid composition of mitochondrial membranes was altered. In addition, cardiomyocytes from CM-Pcsk9−/− mice had an increased number of mitochondria–endoplasmic reticulum contacts and alterations in the morphology of cristae, the physical location of the ETC complexes. We also showed that acute Pcsk9 silencing in adult cardiomyocyte-like cells reduced the activity of ETC complexes and impaired mitochondrial metabolism. Conclusion PCSK9, despite its low expression in cardiomyocytes, contributes to cardiac metabolic function, and PCSK9 deficiency in cardiomyocytes is linked to cardiomyopathy, impaired heart function, and compromised energy production.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy