SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Auriola Seppo) srt2:(2020-2023)"

Sökning: WFRF:(Auriola Seppo) > (2020-2023)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Häkkinen, Katja, et al. (författare)
  • Functional characterization of six SLCO1B1 (OATP1B1) variants observed in Finnish individuals with a psychotic disorder
  • 2023
  • Ingår i: Molecular Pharmaceutics. - : American Chemical Society (ACS). - 1543-8384 .- 1543-8392. ; 20:3, s. 1500-1508
  • Tidskriftsartikel (refereegranskat)abstract
    • Variants in the SLCO1B1 (solute carrier organic anion transporter family member 1B1) gene encoding the OATP1B1 (organic anion transporting polypeptide 1B1) protein are associated with altered transporter function that can predispose patients to adverse drug effects with statin treatment. We explored the effect of six rare SLCO1B1 single nucleotide variants (SNVs) occurring in Finnish individuals with a psychotic disorder on expression and functionality of the OATP1B1 protein. The SUPER-Finland study has performed exome sequencing on 9381 individuals with at least one psychotic episode during their lifetime. SLCO1B1 SNVs were annotated with PHRED-scaled combined annotation-dependent (CADD) scores and the Ensembl variant effect predictor. In vitro functionality studies were conducted for the SNVs with a PHRED-scaled CADD score of >10 and predicted to be missense. To estimate possible changes in transport activity caused by the variants, transport of 2′,7′-dichlorofluorescein (DCF) in OATP1B1-expressing HEK293 cells was measured. According to the findings, additional tests with rosuvastatin and estrone sulfate were conducted. The amount of OATP1B1 in crude membrane fractions was quantified using a liquid chromatography tandem mass spectrometry-based quantitative targeted absolute proteomics analysis. Six rare missense variants of SLCO1B1 were identified in the study population, located in transmembrane helix 3: c.317T>C (p.106I>T), intracellular loop 2: c.629G>T (p.210G>V), c.633A>G (p.211I>M), c.639T>A (p.213N>L), transmembrane helix 6: 820A>G (p.274I>V), and the C-terminal end: 2005A>C (p.669N>H). Of these variants, SLCO1B1 c.629G>T (p.210G>V) resulted in the loss of in vitro function, abolishing the uptake of DCF, estrone sulfate, and rosuvastatin and reducing the membrane protein expression to 31% of reference OATP1B1. Of the six rare missense variants, SLCO1B1 c.629G>T (p.210G>V) causes a loss of function of OATP1B1 transport in vitro and severely decreases membrane protein abundance. Carriers of SLCO1B1 c.629G>T might be susceptible to altered pharmacokinetics of OATP1B1 substrate drugs and might have increased likelihood of adverse drug effects such as statin-associated musculoskeletal symptoms.
  •  
2.
  • Koistinen, Ville Mikael, et al. (författare)
  • Side-stream products of malting: a neglected source of phytochemicals
  • 2020
  • Ingår i: npj Science of Food. - : Springer Science and Business Media LLC. - 2396-8370. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Whole grain consumption reduces the risk of several chronic diseases. A major contributor to the effect is the synergistic and additive effect of phytochemicals. Malting is an important technological method to process whole grains; the main product, malted grain, is used mainly for brewing, but the process also yields high amounts of side-stream products, such as rootlet. In this study, we comprehensively determined the phytochemical profile of barley, oats, rye, and wheat in different stages of malting and the subsequent extraction phases to assess the potential of malted products and side-streams as a dietary source of bioactive compounds. Utilizing semi-quantitative LC–MS metabolomics, we annotated 285 phytochemicals from the samples, belonging to more than 13 chemical classes. Malting significantly altered the levels of the compounds, many of which were highly increased in the rootlet. Whole grain cereals and the malting products were found to be a diverse and rich source of phytochemicals, highlighting the value of these whole foods as a staple. The characterization of phytochemicals from the 24 different sample types revealed previously unknown existence of some of the compound classes in certain species. The rootlet deserves more attention in human nutrition, rather than its current use mainly as feed, to benefit from its high content of bioactive components.
  •  
3.
  • Vitale, Marilena, et al. (författare)
  • Putative metabolites involved in the beneficial effects of wholegrain cereal: Nontargeted metabolite profiling approach
  • 2021
  • Ingår i: Nutrition, Metabolism and Cardiovascular Diseases. - : Elsevier BV. - 0939-4753 .- 1590-3729. ; 31:4, s. 1156-1165
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and aims: Wholegrain cereals have been implicated in the reduction of lifestyle-related chronic diseases risk including cardiovascular diseases and type 2 diabetes. Molecular mechanisms responsible for the beneficial health effects are not entirely understood. The aims of this study were 1) to identify new potential plasma biomarker candidate metabolites of wholegrain cereal foods intake and 2) to examine whether some putative metabolites associated with wholegrain foods intake may play a role in the improvement of cardiometabolic risk factors. Methods and results: Analysis have been conducted in 54 individuals with metabolic syndrome of both genders, age 40–65 years, randomly assigned to 2 dietary interventions lasting 12-week: 1) wholegrain enriched diet (n = 28), and 2) refined-wheat cereals diet (control diet) (n = 26). Nontargeted metabolite profiling analysis was performed on fasting plasma samples collected at baseline and at the end of the experimental diets. Our data show that, at the end of the intervention, a higher intake of wholegrain (tertile 3) was significantly associated with a marked increase in several lipid compounds, as PC (20:4/16:1), LPC (20:4), LPC (22:6), LPC (18:3), LPC (22:5), and a phenolic compound (P < .05 for all). In the wholegrain group, higher concentrations of these metabolites (tertile 3 vs tertile 1 of each metabolite) were significantly associated with lower postprandial insulin and triglyceride responses (P < .05) by 29% and 37%, respectively. Conclusion: These observations suggest a possible role of lipid and polyphenol metabolites in the postprandial metabolic benefits of wholegrains in subjects at high risk of cardiovascular disease. In addition, they provide insight into the role of these metabolites as potential candidate biomarkers of wholegrain foods. The study was registered on ClinicalTrials.gov (identifier: NCT00945854).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy