SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Avella Angelica 1995) srt2:(2024)"

Sökning: WFRF:(Avella Angelica 1995) > (2024)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Avella, Angelica, 1995 (författare)
  • Reactive extrusion of lignocellulose-polyester biocomposites
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The development of biodegradable and recyclable composites based on renewable resources can mitigate the effects of plastic pollution and the depletion of fossil fuels. A biocomposite consists of a matrix strengthened with fibres, and in this work, biodegradable polyesters have been blended with lignocellulosic derivatives, and reactive processing strategies have been developed to tackle the drawbacks of poor lignocellulose dispersion and poor adhesion of the lignocellulose to the polymer matrix. Reactive melt processing combines melt compounding with chemical reactions, and herein it has been explored to tune the interface of biocomposites and improve their performance. Three different ways of strengthening the polymer-lignocellulose interface have been investigated involving (a) modification of the polymer matrix, (b) modification of the lignocellulose, and (c) the addition of a third component. The first approach was a peroxide-initiated branching/crosslinking carried out with water-assisted feeding of the lignocellulose. Crosslinking led to the formation of a uniform hybrid polymer-lignocellulose network that developed creep resistance and heat-shrinkage in the matrix. The mechanical recycling and industrial composting of crosslinked poly(butylene adipate-co-terephthalate) (PBAT)-pulp fibre biocomposites were successfully verified. In the second category, the grafting of epoxidized bio-sourced oils onto industrial lignin was investigated as a way to plasticize the lignin and promote its miscibility with polyesters. Deformable and tough PBAT-modified lignin blends were prepared and shaped by film-blowing, to be subsequently mechanically recycled or industrially composted. The cellulose was also modified by in-situ polymerization of bio-sourced ethylene brassylate to graft the polymer from the cellulose surface. Ring-opening polymerization was achieved by organic and enzymatic catalysis, which showed that grafting from is an effective method of achieving nanocellulose dispersion and consequent stress transfer with the matrix. In the third approach, amphiphilic diblock copolymers with two different tail lengths were designed to mediate the interface between cellulose nanofibrils and PBAT. In an aquatic environment, the cationic anchor block was effectively adsorbed onto the negatively charged nanofibrils, promoting their dispersion, while the longer tail block favoured entanglement with the matrix and deformation of the biocomposites. This thesis contributes to the understanding of biocomposite interfaces, paving the way for future investigations, and proposes sustainable alternatives for the industrial replacement of commodity plastics.
  •  
2.
  • Avella, Angelica, 1995, et al. (författare)
  • Reusable, Recyclable, and Biodegradable Heat-Shrinkable Melt Cross-Linked Poly(butylene adipate-co-terephthalate)/Pulp Biocomposites for Polyvinyl Chloride Replacement
  • 2024
  • Ingår i: ACS Sustainable Chemistry & Engineering. - 2168-0485. ; 12:13, s. 5251-5262
  • Tidskriftsartikel (refereegranskat)abstract
    • Heat-shrinkable films are widely used as disposable secondary packaging but are conventionally made from fossil-based and nonbiodegradable polyvinyl chloride or polyethylene. To lower the environmental impact of such products, this work reports the development of recyclable, biodegradable, and partially biosourced heat-shrinkable biocomposites that are cost-competitive with existing shrink wraps. Poly(butylene adipate-co-terephthalate), a growing biodegradable thermoplastic, was simultaneously reinforced with pulp fibers and partially cross-linked in a single-step reactive melt processing. The designed peroxide-initiated reaction led to a 55 wt % cocontinuous insoluble gel incorporating all the pulp fibers into a cross-linked polymer network. In the solid state, the cross-linked biocomposite shows 60% elongation at break with a 200% increase in Young’s modulus, while the only addition of pulp fibers stiffens and embrittles the matrix. Creep tests in the melt state indicated that the cross-linked network induces homogeneous shrinking even during the loading phase, demonstrating the potential use of the biocomposites as heat-shrinkable films. The shrinking also promotes the shape-memory of the biocomposite, which retains its dimensions after four cycles. The circularity of the materials was assessed by mechanical recycling and industrial composting, which have proven feasible end-of-life options for heat-shrinkable biocomposites.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy