SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ayres J) srt2:(2020-2024)"

Sökning: WFRF:(Ayres J) > (2020-2024)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Sallee, J. B., et al. (författare)
  • Southern ocean carbon and heat impact on climate
  • 2023
  • Ingår i: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. - 1364-503X .- 1471-2962. ; 381:2249
  • Tidskriftsartikel (refereegranskat)abstract
    • The Southern Ocean greatly contributes to the regulation of the global climate by controlling important heat and carbon exchanges between the atmosphere and the ocean. Rates of climate change on decadal timescales are therefore impacted by oceanic processes taking place in the Southern Ocean, yet too little is known about these processes. Limitations come both from the lack of observations in this extreme environment and its inherent sensitivity to intermittent processes at scales that are not well captured in current Earth system models. The Southern Ocean Carbon and Heat Impact on Climate programme was launched to address this knowledge gap, with the overall objective to understand and quantify variability of heat and carbon budgets in the Southern Ocean through an investigation of the key physical processes controlling exchanges between the atmosphere, ocean and sea ice using a combination of observational and modelling approaches. Here, we provide a brief overview of the programme, as well as a summary of some of the scientific progress achieved during its first half. Advances range from new evidence of the importance of specific processes in Southern Ocean ventilation rate (e.g. storm-induced turbulence, sea-ice meltwater fronts, wind-induced gyre circulation, dense shelf water formation and abyssal mixing) to refined descriptions of the physical changes currently ongoing in the Southern Ocean and of their link with global climate.This article is part of a discussion meeting issue 'Heat and carbon uptake in the Southern Ocean: the state of the art and future priorities'.
  •  
3.
  •  
4.
  • Metcalfe, Travis S., et al. (författare)
  • Asteroseismology and Spectropolarimetry of the Exoplanet Host Star Lambda Serpentis
  • 2023
  • Ingår i: Astronomical Journal. - : Institute of Physics (IOP). - 0004-6256 .- 1538-3881. ; 166:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The bright star lambda Ser hosts a hot Neptune with a minimum mass of 13.6 M & OPLUS; and a 15.5 day orbit. It also appears to be a solar analog, with a mean rotation period of 25.8 days and surface differential rotation very similar to the Sun. We aim to characterize the fundamental properties of this system and constrain the evolutionary pathway that led to its present configuration. We detect solar-like oscillations in time series photometry from the Transiting Exoplanet Survey Satellite, and we derive precise asteroseismic properties from detailed modeling. We obtain new spectropolarimetric data, and we use them to reconstruct the large-scale magnetic field morphology. We reanalyze the complete time series of chromospheric activity measurements from the Mount Wilson Observatory, and we present new X-ray and ultraviolet observations from the Chandra and Hubble space telescopes. Finally, we use the updated observational constraints to assess the rotational history of the star and estimate the wind braking torque. We conclude that the remaining uncertainty on the stellar age currently prevents an unambiguous interpretation of the properties of lambda Ser, and that the rate of angular momentum loss appears to be higher than for other stars with a similar Rossby number. Future asteroseismic observations may help to improve the precision of the stellar age.
  •  
5.
  •  
6.
  • Elimian, K, et al. (författare)
  • Epidemiology, diagnostics and factors associated with mortality during a cholera epidemic in Nigeria, October 2020-October 2021: a retrospective analysis of national surveillance data
  • 2022
  • Ingår i: BMJ open. - : BMJ. - 2044-6055. ; 12:9, s. e063703-
  • Tidskriftsartikel (refereegranskat)abstract
    • Nigeria reported an upsurge in cholera cases in October 2020, which then transitioned into a large, disseminated epidemic for most of 2021. This study aimed to describe the epidemiology, diagnostic performance of rapid diagnostic test (RDT) kits and the factors associated with mortality during the epidemic.DesignA retrospective analysis of national surveillance data.Setting33 of 37 states (including the Federal Capital Territory) in Nigeria.ParticipantsPersons who met cholera case definition (a person of any age with acute watery diarrhoea, with or without vomiting) between October 2020 and October 2021 within the Nigeria Centre for Disease Control surveillance data.Outcome measuresAttack rate (AR; per 100 000 persons), case fatality rate (CFR; %) and accuracy of RDT performance compared with culture using area under the receiver operating characteristic curve (AUROC). Additionally, individual factors associated with cholera deaths and hospitalisation were presented as adjusted OR with 95% CIs.ResultsOverall, 93 598 cholera cases and 3298 deaths (CFR: 3.5%) were reported across 33 of 37 states in Nigeria within the study period. The proportions of cholera cases were higher in men aged 5–14 years and women aged 25–44 years. The overall AR was 46.5 per 100 000 persons. The North-West region recorded the highest AR with 102 per 100 000. Older age, male gender, residency in the North-Central region and severe dehydration significantly increased the odds of cholera deaths. The cholera RDT had excellent diagnostic accuracy (AUROC=0.91; 95% CI 0.87 to 0.96).ConclusionsCholera remains a serious public health threat in Nigeria with a high mortality rate. Thus, we recommend making RDT kits more widely accessible for improved surveillance and prompt case management across the country.
  •  
7.
  • Metcalfe, Travis S., et al. (författare)
  • Constraints on Magnetic Braking from the G8 Dwarf Stars 61 UMa and tau Cet
  • 2023
  • Ingår i: Astrophysical Journal Letters. - : Institute of Physics (IOP). - 2041-8205 .- 2041-8213. ; 948:1
  • Tidskriftsartikel (refereegranskat)abstract
    • During the first half of their main-sequence lifetimes, stars rapidly lose angular momentum to their magnetized winds, a process known as magnetic braking. Recent observations suggest a substantial decrease in the magnetic braking efficiency when stars reach a critical value of the Rossby number, the stellar rotation period normalized by the convective overturn timescale. Cooler stars have deeper convection zones with longer overturn times, reaching this critical Rossby number at slower rotation rates. The nature and timing of the transition to weakened magnetic braking have previously been constrained by several solar analogs and two slightly hotter stars. In this Letter, we derive the first direct constraints from stars cooler than the Sun. We present new spectropolarimetry of the old G8 dwarf tau Cet from the Large Binocular Telescope, and we reanalyze a published Zeeman Doppler image of the younger G8 star 61 UMa, yielding the large-scale magnetic field strengths and morphologies. We estimate mass-loss rates using archival X-ray observations and inferences from Ly alpha measurements, and we adopt other stellar properties from asteroseismology and spectral energy distribution fitting. The resulting calculations of the wind braking torque demonstrate that the rate of angular momentum loss drops by a factor of 300 between the ages of these two stars (1.4-9 Gyr), well above theoretical expectations. We summarize the available data to help constrain the value of the critical Rossby number, and we identify a new signature of the long-period detection edge in recent measurements from the Kepler mission.
  •  
8.
  • Metcalfe, Travis S., et al. (författare)
  • The Origin of Weakened Magnetic Braking in Old Solar Analogs
  • 2022
  • Ingår i: Astrophysical Journal Letters. - : Institute of Physics Publishing (IOPP). - 2041-8205 .- 2041-8213. ; 933:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The rotation rates of main-sequence stars slow over time as they gradually lose angular momentum to their magnetized stellar winds. The rate of angular momentum loss depends on the strength and morphology of the magnetic field, the mass-loss rate, and the stellar rotation period, mass, and radius. Previous observations suggested a shift in magnetic morphology between two F-type stars with similar rotation rates but very different ages (88 Leo and rho CrB). In this Letter, we identify a comparable transition in an evolutionary sequence of solar analogs with ages between 2-7 Gyr. We present new spectropolarimetry of 18 Sco and 16 Cyg A and B from the Large Binocular Telescope, and we reanalyze previously published Zeeman Doppler images of HD 76151 and 18 Sco, providing additional constraints on the nature and timing of this transition. We combine archival X-ray observations with updated distances from Gaia to estimate mass-loss rates, and we adopt precise stellar properties from asteroseismology and other sources. We then calculate the wind braking torque for each star in the evolutionary sequence, demonstrating that the rate of angular momentum loss drops by more than an order of magnitude between the ages of HD 76151 and 18 Sco (2.6-3.7 Gyr) and continues to decrease modestly to the age of 16 Cyg A and B (7 Gyr). We suggest that this magnetic transition may represent a disruption of the global dynamo arising from weaker differential rotation, and we outline plans to probe this phenomenon in additional stars spanning a wide range of spectral types.
  •  
9.
  • Metcalfe, Travis S., et al. (författare)
  • Weakened Magnetic Braking in the Exoplanet Host Star 51 Peg
  • 2024
  • Ingår i: Astrophysical Journal Letters. - : Institute of Physics Publishing (IOPP). - 2041-8205 .- 2041-8213. ; 960:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The consistently low activity level of the old solar analog 51 Peg not only facilitated the discovery of the first hot Jupiter, but also led to the suggestion that the star could be experiencing a magnetic grand minimum. However, the 50 yr time series showing minimal chromospheric variability could also be associated with the onset of weakened magnetic braking (WMB), where sufficiently slow rotation disrupts cycling activity and the production of large-scale magnetic fields by the stellar dynamo, thereby shrinking the Alfven radius and inhibiting the efficient loss of angular momentum to magnetized stellar winds. In this Letter, we evaluate the magnetic evolutionary state of 51 Peg by estimating its wind braking torque. We use new spectropolarimetric measurements from the Large Binocular Telescope to reconstruct the large-scale magnetic morphology, we reanalyze archival X-ray measurements to estimate the mass-loss rate, and we detect solar-like oscillations in photometry from the Transiting Exoplanet Survey Satellite, yielding precise stellar properties from asteroseismology. Our estimate of the wind braking torque for 51 Peg clearly places it in the WMB regime, driven by changes in the mass-loss rate and the magnetic field strength and morphology that substantially exceed theoretical expectations. Although our revised stellar properties have minimal consequences for the characterization of the exoplanet, they have interesting implications for the current space weather environment of the system.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy