SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Backman John) srt2:(2015-2019)"

Sökning: WFRF:(Backman John) > (2015-2019)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Backman, John, et al. (författare)
  • On Aethalometer measurement uncertainties and an instrument correction factor for the Arctic
  • 2017
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 10:12, s. 5039-5062
  • Tidskriftsartikel (refereegranskat)abstract
    • Several types of filter-based instruments are used to estimate aerosol light absorption coefficients. Two significant results are presented based on Aethalometer measurements at six Arctic stations from 2012 to 2014. First, an alternative method of post-processing the Aethalometer data is presented, which reduces measurement noise and lowers the detection limit of the instrument more effectively than box-car averaging. The biggest benefit of this approach can be achieved if instrument drift is minimised. Moreover, by using an attenuation threshold criterion for data post-processing, the relative uncertainty from the electronic noise of the instrument is kept constant. This approach results in a time series with a variable collection time (Delta t) but with a constant relative uncertainty with regard to electronic noise in the instrument. An additional advantage of this method is that the detection limit of the instrument will be lowered at small aerosol concentrations at the expense of temporal resolution, whereas there is little to no loss in temporal resolution at high aerosol concentrations (>2.1-6.7Mm(-1) as measured by the Aethalometers). At high aerosol concentrations, minimising the detection limit of the instrument is less critical. Additionally, utilising co-located filter-based absorption photometers, a correction factor is presented for the Arctic that can be used in Aethalometer corrections available in literature. The correction factor of 3.45 was calculated for low-elevation Arctic stations. This correction factor harmonises Aethalometer attenuation coefficients with light absorption coefficients as measured by the co-located light absorption photometers. Using one correction factor for Arctic Aethalometers has the advantage that measurements between stations become more inter-comparable.
  •  
3.
  • Schmeisser, Lauren, et al. (författare)
  • Seasonality of aerosol optical properties in the Arctic
  • 2018
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:16, s. 11599-11622
  • Tidskriftsartikel (refereegranskat)abstract
    • Given the sensitivity of the Arctic climate to short-lived climate forcers, long-term in situ surface measurements of aerosol parameters are useful in gaining insight into the magnitude and variability of these climate forcings. Seasonality of aerosol optical properties - including the aerosol light-scattering coefficient, absorption coefficient, single-scattering albedo, scattering Angstrom exponent, and asymmetry parameter - are presented for six monitoring sites throughout the Arctic: Alert, Canada; Barrow, USA; Pallas, Finland; Summit, Greenland; Tiksi, Russia; and Zeppelin Mountain, Ny-Alesund, Svalbard, Norway. Results show annual variability in all parameters, though the seasonality of each aerosol optical property varies from site to site. There is a large diversity in magnitude and variability of scattering coefficient at all sites, reflecting differences in aerosol source, transport, and removal at different locations throughout the Arctic. Of the Arctic sites, the highest annual mean scattering coefficient is measured at Tiksi (12.47 Mm(-1)), and the lowest annual mean scattering coefficient is measured at Summit (1.74 Mm(-1)). At most sites, aerosol absorption peaks in the winter and spring, and has a minimum throughout the Arctic in the summer, indicative of the Arctic haze phenomenon; however, nuanced variations in seasonalities suggest that this phenomenon is not identically observed in all regions of the Arctic. The highest annual mean absorption coefficient is measured at Pallas (0.48 Mm(-1)), and Summit has the lowest annual mean absorption coefficient (0.12 Mm(-1)). At the Arctic monitoring stations analyzed here, mean annual single-scattering albedo ranges from 0.909 (at Pallas) to 0.960 (at Barrow), the mean annual scattering Angstrom exponent ranges from 1.04 (at Barrow) to 1.80 (at Summit), and the mean asymmetry parameter ranges from 0.57 (at Alert) to 0.75 (at Summit). Systematic variability of aerosol optical properties in the Arctic supports the notion that the sites presented here measure a variety of aerosol populations, which also experience different removal mechanisms. A robust conclusion from the seasonal cycles presented is that the Arctic cannot be treated as one common and uniform environment but rather is a region with ample spatiotemporal variability in aerosols. This notion is important in considering the design or aerosol monitoring networks in the region and is important for informing climate models to better represent short-lived aerosol climate forcers in order to yield more accurate climate predictions for the Arctic.
  •  
4.
  • Budhavant, Krishnakant, et al. (författare)
  • Anthropogenic fine aerosols dominate the wintertime regime over the northern Indian Ocean
  • 2018
  • Ingår i: Tellus. Series B, Chemical and physical meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 70
  • Tidskriftsartikel (refereegranskat)abstract
    • This study presents and evaluates the most comprehensive set to date of chemical, physical and optical properties of aerosols in the outflow from South Asia covering a full winter (Nov. 2014 - March 2015), here intercepted at the Indian Ocean receptor site of the Maldives Climate Observatory in Hanimaadhoo (MCOH). Cluster analysis of air-mass back trajectories for MCOH, combined with AOD and meteorological data, demonstrate that the wintertime northern Indian Ocean is strongly influenced by aerosols transported from source regions with three major wind regimes, originating from the Indo-Gangetic Plain (IGP), the Bay of Bengal (BoB) and the Arabian Sea (AS). As much as 97 +/- 3% of elemental carbon (EC) in the PM10 was also found in the fine mode (PM2.5). Other mainly anthropogenic constituents such as organic carbon (OC), non-sea-salt (nss) -K+, nss-SO42- and NH4+ were also predominantly in the fine mode (70-95%), particularly in the air masses from IGP. The combination at this large-footprint receptor observatory of consistently low OC/EC ratio (2.0 +/- 0.5), strong linear relationships between EC and OC as well as between nss-K+ and both OC and EC, suggest a predominance of primary sources, with a large biomass burning contribution. The particle number-size distributions for the air masses from IGP and BoB exhibited clear bimodal shapes within the fine fraction with distinct accumulation (0.1m0.03. Taken together, the aerosol pollution over the northern Indian Ocean in the dry season is dominated by a well-mixed long-range transported regime of the fine-mode aerosols largely from primary combustion origin.
  •  
5.
  • Börve, Alexander, et al. (författare)
  • Smartphone Teledermoscopy Referrals: A Novel Process for Improved Triage of Skin Cancer Patients.
  • 2015
  • Ingår i: Acta dermato-venereologica. - : Medical Journals Sweden AB. - 1651-2057 .- 0001-5555. ; 95:2, s. 186-190
  • Tidskriftsartikel (refereegranskat)abstract
    • In this open, controlled, multicentre and prospective observational study, smartphone teledermoscopy referrals were sent from 20 primary healthcare centres to 2 dermatology departments for triage of skin lesions of concern using a smartphone application and a compatible digital dermoscope. The outcome for 816 patients referred via smartphone teledermoscopy was compared with 746 patients referred via the traditional paper-based system. When surgical treatment was required, the waiting time was significantly shorter using teledermoscopy for patients with melanoma, melanoma in situ, squamous cell carcinoma, squamous cell carcinoma in situ and basal cell carcinoma. Triage decisions were also more reliable with teledermoscopy and over 40% of the teledermoscopy patients could potentially have avoided face-to-face visits. Only 4 teledermoscopy referrals (0.4%) had to be excluded due to poor image quality. Smartphone teledermoscopy referrals allow for faster and more efficient management of patients with skin cancer as compared to traditional paper referrals.
  •  
6.
  • Dahlén Gyllencreutz, Johan, et al. (författare)
  • Teledermoscopy images acquired in primary health care and hospital settings - a comparative study of image quality.
  • 2018
  • Ingår i: Journal of the European Academy of Dermatology and Venereology : JEADV. - : Wiley. - 1468-3083 .- 0926-9959. ; 32:6, s. 1038-1043
  • Tidskriftsartikel (refereegranskat)abstract
    • The incidence of melanoma and non-melanoma skin cancer is increasing, which has also lead to an increase in referrals between primary health care (PHC) and dermatology departments, putting a strain on healthcare services. Teledermoscopy (TDS) referrals from PHC can improve the triage process for patients with suspicious skin tumours, but the quality of the images included could potentially affect its usefulness.To critically appraise the quality of the dermoscopic images of a smartphone TDS system, by comparing the TDS referral images with images of the same tumours acquired at the department of dermatology.Two dermatologists rated the image quality of two image sets from 172 skin tumours separately. The dermatologists also decided on a main diagnosis, differential diagnoses and described the visible dermoscopic structures.The images acquired in PHC were rated as having slightly lower quality, but there was no significant difference. PHC images and dermatology images were of intermediate-to-high quality in 95.5%-97.7% and 96.5%-98.8%, respectively. There was no difference in agreement between the TDS diagnosis based on the two image sets with the final clinical or histopathological diagnosis. Most image pairs (81.4% and 83.7%) received the same main diagnosis by the two evaluators. When this was not the case, the most common reasons were poor focus, excessive pressure applied when acquiring the image or inadequate amount of zoom.TDS performed in PHC with a smartphone-based system does not seem to negatively affect the usefulness of TDS referrals. Thus, physicians at PHC do not necessarily need to be trained photographers to ensure adequate TDS image quality. Knowledge about technical difficulties could however be used when training PHC staff, to improve the image quality further.
  •  
7.
  • Dasari, Sanjeev, et al. (författare)
  • Photochemical degradation affects the light absorption of water-soluble brown carbon in the South Asian outflow
  • 2019
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Light-absorbing organic aerosols, known as brown carbon (BrC), counteract the overall cooling effect of aerosols on Earth's climate. The spatial and temporal dynamics of their light-absorbing properties are poorly constrained and unaccounted for in climate models, because of limited ambient observations. We combine carbon isotope forensics (delta C-13) with measurements of light absorption in a conceptual aging model to constrain the loss of light absorptivity (i.e., bleaching) of water-soluble BrC (WS-BrC) aerosols in one of the world's largest BrC emission regions-South Asia. On this regional scale, we find that atmospheric photochemical oxidation reduces the light absorption of WS-BrC by similar to 84% during transport over 6000 km in the Indo-Gangetic Plain, with an ambient first-order bleaching rate of 0.20 +/- 0.05 day(-1) during over-ocean transit across Bay of Bengal to an Indian Ocean receptor site. This study facilitates dynamic parameterization of WS-BrC absorption properties, thereby constraining BrC climate impact over South Asia.
  •  
8.
  • Pandolfi, Marco, et al. (författare)
  • A European aerosol phenomenology-6 : scattering properties of atmospheric aerosol particles from 28 ACTRIS sites
  • 2018
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:11, s. 7877-7911
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents the light-scattering properties of atmospheric aerosol particles measured over the past decade at 28 ACTRIS observatories, which are located mainly in Europe. The data include particle light scattering (sigma(sp)) and hemispheric backscattering (sigma(bsp)) coefficients, scattering Angstrom exponent (SAE), backscatter fraction (BF) and asymmetry parameter (g). An increasing gradient of sigma(sp) is observed when moving from remote environments (arctic/mountain) to regional and to urban environments. At a regional level in Europe, sigma(sp) also increases when moving from Nordic and Baltic countries and from western Europe to central/eastern Europe, whereas no clear spatial gradient is observed for other station environments. The SAE does not show a clear gradient as a function of the placement of the station. However, a west-to-east-increasing gradient is observed for both regional and mountain placements, suggesting a lower fraction of fine-mode particle in western/south-western Europe compared to central and eastern Europe, where the fine-mode particles dominate the scattering. The g does not show any clear gradient by station placement or geographical location reflecting the complex relationship of this parameter with the physical properties of the aerosol particles. Both the station placement and the geographical location are important factors affecting the intraannual variability. At mountain sites, higher sigma(sp) and SAE values are measured in the summer due to the enhanced boundary layer influence and/or new particle-formation episodes. Conversely, the lower horizontal and vertical dispersion during winter leads to higher sigma(sp) values at all low-altitude sites in central and eastern Europe compared to summer. These sites also show SAE maxima in the summer (with corresponding g minima). At all sites, both SAE and g show a strong variation with aerosol particle loading. The lowest values of g are always observed together with low sigma(sp) values, indicating a larger contribution from particles in the smaller accumulation mode. During periods of high sigma(sp) values, the variation of g is less pronounced, whereas the SAE increases or decreases, suggesting changes mostly in the coarse aerosol particle mode rather than in the fine mode. Statistically significant decreasing trends of sigma(sp) are observed at 5 out of the 13 stations included in the trend analyses. The total reductions of sigma(sp) are consistent with those reported for PM2.5 and PM10 mass concentrations over similar periods across Europe.
  •  
9.
  • Paoli, John, 1975, et al. (författare)
  • Nonsurgical Options for the Treatment of Basal Cell Carcinoma.
  • 2019
  • Ingår i: Dermatology practical & conceptual. - : Mattioli1885. - 2160-9381. ; 9:2, s. 75-81
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this review article is to summarize the effectiveness, potential adverse events, and indications of the main nonsurgical treatment alternatives for basal cell carcinoma.An extensive literature review was carried out. The most relevant articles were discussed and selected by the authors in order to provide a brief but evidence-based overview of the most common nonsurgical methods used for treating basal cell carcinoma.Although surgery and Mohs micrographic surgery are often considered the optimal treatment options for basal cell carcinoma, these tumors can also be treated successfully with destructive techniques (eg, curettage alone, cryosurgery, or electrodesiccation), photodynamic therapy, topical drugs (eg, 5-fluorouracil, imiquimod, or ingenol mebutate), radiotherapy, or hedgehog pathway inhibitors. When choosing between these alternatives, physicians must take into consideration the tumor's size, location, and histopathological subtype. Special care should be taken when treating recurrent tumors. Furthermore, physician experience is of great importance when using destructive techniques. Finally, patient preference, potential adverse events, and cosmetic outcome should also be considered.Dermatologists and physicians treating basal cell carcinoma should have knowledge of and experience with the large arsenal of therapeutic alternatives available for the successful, safe, and individualized management of patients with basal cell carcinoma.
  •  
10.
  • Paoli, John, 1975, et al. (författare)
  • Response to the letter by Leitch et al.
  • 2015
  • Ingår i: Acta dermato-venereologica. - 1651-2057. ; 95:7, s. 870-1
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy