SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Baden Susanne) srt2:(2010-2014)"

Sökning: WFRF:(Baden Susanne) > (2010-2014)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Eriksson, Susanne P., 1964, et al. (författare)
  • Stress Biology and Immunology in Nephrops norvegicus
  • 2013
  • Ingår i: Advances in Marine Biology. - : Elsevier. - 0065-2881. ; 64, s. 149-200
  • Tidskriftsartikel (refereegranskat)abstract
    • The Norway lobster Nephrops norvegicus lives at low-light depths, in muddy substrata of high organic content where water salinities are high and fluctuations in temperature are moderate. In this environment, the lobsters are naturally exposed to a number of potential stressors, many of them as a result of the surficial breakdown of organic material in the sediment. This process (early diagenesis) creates a heterogeneous environment with temporal and spatial fluctuations in a number of compounds such as oxygen, ammonia, metals, and hydrogen sulphide. In addition to this, there are anthropogenically generated stressors, such as human-induced climate change (resulting in elevated temperature and ocean acidification), pollution and fishing. The lobsters are thus exposed to several stressors, which are strongly linked to the habitat in which the animals live. Here, the capacity of Nephrops to deal with these stressors is summarised. Eutrophication-induced hypoxia and subsequent metal remobilisation from the sediment is a well-documented effect found in some wild Nephrops populations. Compared to many other crustacean species, Nephrops is well adapted to tolerate periods of hypoxia, but prolonged or severe hypoxia, beyond their tolerance level, is common in some areas. When the oxygen concentration in the environment decreases, the bioavailability of redox-sensitive metals such as manganese increases. Manganese is an essential metal, which, taken up in excess, has a toxic effect on several internal systems such as chemosensitivity, nerve transmission and immune defence. Since sediment contains high concentrations of metals in comparison to sea water, lobsters may accumulate both essential and non-essential metals. Different metals have different target tissues, though the hepatopancreas, in general, accumulates high concentrations of most metals. The future scenario of increasing anthropogenic influences on Nephrops habitats may have adverse effects on the fitness of the animals.
  •  
2.
  • Eriksson, Susanne P., et al. (författare)
  • Stress biology and immunology in Nephrops norvegicus
  • 2013
  • Ingår i: The ecology and biology of Nephrops norvegicus. - Amsterdam : Academic Press. ; , s. 149-200
  • Bokkapitel (populärvet., debatt m.m.)abstract
    • The Norway lobster Nephrops norvegicus lives at low-light depths, in muddy substrata of high organic content where water salinities are high and fluctuations in temperature are moderate. In this environment, the lobsters are naturally exposed to a number of potential stressors, many of them as a result of the surficial breakdown of organic material in the sediment. This process (early diagenesis) creates a heterogeneous environment with temporal and spatial fluctuations in a number of compounds such as oxygen, ammonia, metals, and hydrogen sulphide. In addition to this, there are anthropogenically generated stressors, such as human-induced climate change (resulting in elevated temperature and ocean acidification), pollution and fishing. The lobsters are thus exposed to several stressors, which are strongly linked to the habitat in which the animals live. Here, the capacity of Nephrops to deal with these stressors is summarised. Eutrophication-induced hypoxia and subsequent metal remobilisation from the sediment is a well-documented effect found in some wild Nephrops populations. Compared to many other crustacean species, Nephrops is well adapted to tolerate periods of hypoxia, but prolonged or severe hypoxia, beyond their tolerance level, is common in some areas. When the oxygen concentration in the environment decreases, the bioavailability of redox-sensitive metals such as manganese increases. Manganese is an essential metal, which, taken up in excess, has a toxic effect on several internal systems such as chemosensitivity, nerve transmission and immune defence. Since sediment contains high concentrations of metals in comparison to sea water, lobsters may accumulate both essential and non-essential metals. Different metals have different target tissues, though the hepatopancreas, in general, accumulates high concentrations of most metals. The future scenario of increasing anthropogenic influences on Nephrops habitats may have adverse effects on the fitness of the animals.
  •  
3.
  • Asplund, Maria. E., 1970, et al. (författare)
  • Ocean acidification and host-pathogen interactions: blue mussels, Mytilus edulis, encountering Vibrio tubiashii
  • 2014
  • Ingår i: Environmental Microbiology. - : Wiley. - 1462-2912 .- 1462-2920. ; 16:4, s. 1029-1039
  • Tidskriftsartikel (refereegranskat)abstract
    • Ocean acidification (OA) can shift the ecological balance between interacting organisms. In this study, we have used a model system to illustrate the interaction between a calcifying host organism, the blue mussel Mytilus edulis and a common bivalve bacterial pathogen, Vibrio tubiashii, with organisms being exposed to a level of acidification projected to occur by the end of the 21st century. OA exposures of the mussels were carried out in relative long-term (4 months) and short-term (4 days) experiments. We found no effect of OA on the culturability of V.tubiashii, in broth or in seawater. OA inhibited mussel shell growth and impaired crystalline shell structures but did not appear to affect mussel immune parameters (i.e haemocyte counts and phagocytotic capacity). Despite no evident impact on host immunity or growth and virulence of the pathogen, V.tubiashii was clearly more successful in infecting mussels exposed to long-term OA compared to those maintained under ambient conditions. Moreover, OA exposed V.tubiashii increased their viability when exposed to haemocytes of OA-treated mussel. Our findings suggest that even though host organisms may have the capacity to cope with periods of OA, these conditions may alter the outcome of host–pathogen interactions, favouring the success of the latter.
  •  
4.
  • Baden, Susanne P., 1952, et al. (författare)
  • Relative importance of trophic interactions and nutrient enrichment in seagrass ecosystems: A broad-scale field experiment in the Baltic-Skagerrak area.
  • 2010
  • Ingår i: Limnology and Oceanography. - 1541-5856. ; 55:3, s. 1435-1448
  • Tidskriftsartikel (refereegranskat)abstract
    • The interaction of eutrophication and predation in structuring seagrass Zostera marina L. ecosystems was assessed in a field experiment in three regions along an estuarine salinity gradient, from southern Finland to the Skagerrak area of the Swedish west coast. All regions are considered to be affected by eutrophication and overfishing but differ in the abundance of intermediate predators (e.g., small fish, shrimp, and crabs), mesograzers, and the biomass of epiphytic algae. Using transplanted Zostera (eelgrass), nutrient levels and intermediate predator abundance were manipulated in a full-factorial cage experiment. On the Swedish west coast, where ambient densities of mesograzers are very low, epiphytic algae responded strongly to nutrient enrichment, resulting in significantly reduced growth of eelgrass. At the Baltic sites however, where ambient densities of mesograzers are high, no significant growth of epiphytic algae was detected, and only grazer biomass responded to nutrient enrichment. Predation from small fish, shrimp, and crabs decreased the biomass of mesograzers by . 98% on the Swedish west coast, but natural predators had no significant effect on mesograzers biomass at the Baltic sites. Predation and nutrient enrichment interacted to affect the growth of eelgrass by controlling the biomass of mesograzers and nuisance algae. The differing effect of nutrient enrichment and grazing in the three regions may therefore be a result of the prevailing low and high predation pressure on mesograzers in Zostera. This absence or presence of predation may derive from interregional changes in trophic interactions, possibly caused by a combination of eutrophication and overfishing.
  •  
5.
  • Baden, Susanne P., 1952, et al. (författare)
  • Shift in seagrass food web structure over decades is linked to overfishing
  • 2012
  • Ingår i: Marine Ecology-Progress Series. - : Inter-Research Science Center. - 0171-8630 .- 1616-1599. ; 451, s. 61-73
  • Tidskriftsartikel (refereegranskat)abstract
    • Empirical field studies in seagrass have revealed that overgrowth by filamentous algae which reduces seagrass growth can be explained by a top-down cascading effect caused by declines in top predators, which is enforced by eutrophication. On the Swedish west coast, 60% of the seagrass has disappeared since the 1980s. We hypothesised that overfishing, responsible for a >90% decline in the cod stock, and the 4 to 8 times increase in nutrient load since the 1930s have altered the seagrass structure and function during recent decades. We used quantitative samples from the 1980s and 2000s and analysed the trends in abundance of the 4 feeding guilds: top predatory fish, intermediate predatory fish, crustacean omnivores and mesoherbivores. Since the 1980s, the commercial catch of gadoids on the Swedish west coast has decreased by >90 %, and here we found that the biomass of top predators (gadoids and trout) that forage in seagrass has decreased by approximately 80%. In contrast, the biomass of intermediate predatory fish (gobids and sticklebacks) has increased 8 times during summer and 11 times during autumn, while mesoherbivores (idoteids and gammarids >7 mm) have more or less disappeared from the seagrass bed. We thus found clear evidence that a shift in seagrass food web structure has taken place over the last 3 decades. Combining these findings with our recent empirical results from field cage experiments in the Skagerrak seagrass, where we manipulate top-down and bottom-up regulation, we conclude that lack of grazers in concert with eutrophication most likely contributed to the overgrowth by filamentous algae and disappearance of the seagrass on the Swedish west coast.
  •  
6.
  • Boström, C., et al. (författare)
  • Distribution, structure and function of Nordic eelgrass (Zostera marina) ecosystems: Implications for coastal management and conservation
  • 2014
  • Ingår i: Aquatic conservation. - : Wiley. - 1052-7613. ; 24:3, s. 410-434
  • Forskningsöversikt (refereegranskat)abstract
    • This paper focuses on the marine foundation eelgrass species, Zostera marina, along a gradient from the northern Baltic Sea to the north-east Atlantic. This vast region supports a minimum of 1480km2 eelgrass (maximum >2100km2), which corresponds to more than four times the previously quantified area of eelgrass in Western Europe. Eelgrass meadows in the low salinity Baltic Sea support the highest diversity (4-6 spp.) of angiosperms overall, but eelgrass productivity is low (<2g dw m-2 d-1) and meadows are isolated and genetically impoverished. Higher salinity areas support monospecific meadows, with higher productivity (3-10g dw m-2 d-1) and greater genetic connectivity. The salinity gradient further imposes functional differences in biodiversity and food webs, in particular a decline in number, but increase in biomass of mesograzers in the Baltic. Significant declines in eelgrass depth limits and areal cover are documented, particularly in regions experiencing high human pressure. The failure of eelgrass to re-establish itself in affected areas, despite nutrient reductions and improved water quality, signals complex recovery trajectories and calls for much greater conservation effort to protect existing meadows. The knowledge base for Nordic eelgrass meadows is broad and sufficient to establish monitoring objectives across nine national borders. Nevertheless, ensuring awareness of their vulnerability remains challenging. Given the areal extent of Nordic eelgrass systems and the ecosystem services they provide, it is crucial to further develop incentives for protecting them. © 2014 The Authors.
  •  
7.
  • Gullström, Martin, 1968, et al. (författare)
  • Spatial patterns and environmental correlates in leaf-associated epifaunal assemblages of temperate seagrass (Zostera marina) meadows
  • 2012
  • Ingår i: Marine Biology. - : Springer Science and Business Media LLC. - 0025-3162 .- 1432-1793. ; 159:2, s. 413-425
  • Tidskriftsartikel (refereegranskat)abstract
    • We estimated and tested variability of seagrass leaf-associated epifaunal assemblages at a range of scales. Sampling was performed in 36 seagrass (Zostera marina) meadows within three regions along the Swedish west coast following a hierarchical design (samples separated by 10 s m, km or 100 km). Results showed strongest variability (43-81%) at the intermediate amongst-meadow (km) scale using biomass of functional categories, while considering taxa composition the within-meadow (10 s m) scale contributed most to variability (60%). Using functional categories, we found that embayment exposure and seagrass shoot density were the most important predictor variables explaining part of the variability in biomass of suspension feeders (bivalves and barnacles) and grazers. In contrast, variability in epifaunal taxa composition was predicted mainly by sediment chemistry, substratum coverage and geographical positioning. Our findings suggest that models to develop predictive power and mechanistic understanding should focus on variables and processes varying at small and intermediate scales rather than those varying at larger scales.
  •  
8.
  •  
9.
  • Hernroth, Bodil, 1951, et al. (författare)
  • Simulated climate change causes immune suppression and protein damage in the crustacean Nephrops norvegicus
  • 2012
  • Ingår i: Fish & Shellfish Immunology. - : Elsevier BV. - 1050-4648 .- 1095-9947. ; 33:5, s. 1095-1101
  • Tidskriftsartikel (refereegranskat)abstract
    • Rising atmospheric carbon dioxide concentration is causing global warming, which affects oceans by elevating water temperature and reducing pH. Crustaceans have been considered tolerant to ocean acidification because of their retained capacity to calcify during subnormal pH. However, we report here that significant immune suppression of the Norway lobster, Nephrops norvegicus, occurs after a 4-month exposure to ocean acidification (OA) at a level predicted for the year 2100 (hypercapnic seawater with a pH lowered by 0.4 units). Experiments carried out at different temperatures (5, 10, 12, 14, 16, and 18 °C) demonstrated that the temperature within this range alone did not affect lobster immune responses. In the OA-treatment, hemocyte numbers were reduced by almost 50% and the phagocytic capacity of the remaining hemocytes was inhibited by 60%. The reduction in hemocyte numbers was not due to increased apoptosis in hematopoetic tissue. Cellular responses to stress were investigated through evaluating advanced glycation end products (AGE) and lipid oxidation in lobster hepatopancreata, and OA-treatment was shown to significantly increase AGEs', indicating stress-induced protein alterations. Furthermore, the extracellular pH of lobster hemolymph was reduced by approximately 0.2 units in the OA-treatment group, indicating either limited pH compensation or buffering capacity. The negative effects of OA-treatment on the nephropidae immune response and tissue homeostasis were more pronounced at higher temperatures (12–18 °C versus 5 °C), which may potentially affect disease severity and spread. Our results signify that ocean acidification may have adverse effects on the physiology of lobsters, which previously had been overlooked in studies of basic parameters such as lobster growth or calcification.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy