SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bahramy M. S.) "

Search: WFRF:(Bahramy M. S.)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bahramy, M. S., et al. (author)
  • Ubiquitous formation of bulk Dirac cones and topological surface states from a single orbital manifold in transition-metal dichalcogenides
  • 2018
  • In: Nature Materials. - 1476-1122. ; 17:1, s. 21-27
  • Journal article (peer-reviewed)abstract
    • Transition-metal dichalcogenides (TMDs) are renowned for their rich and varied bulk properties, while their single-layer variants have become one of the most prominent examples of two-dimensional materials beyond graphene. Their disparate ground states largely depend on transition metal d-electron-derived electronic states, on which the vast majority of attention has been concentrated to date. Here, we focus on the chalcogen-derived states. From density-functional theory calculations together with spin- and angle-resolved photoemission, we find that these generically host a co-existence of type-I and type-II three-dimensional bulk Dirac fermions as well as ladders of topological surface states and surface resonances. We demonstrate how these naturally arise within a single p-orbital manifold as a general consequence of a trigonal crystal field, and as such can be expected across a large number of compounds. Already, we demonstrate their existence in six separate TMDs, opening routes to tune, and ultimately exploit, their topological physics.
  •  
2.
  • Riley, J. M., et al. (author)
  • Direct observation of spin-polarized bulk bands in an inversion-symmetric semiconductor
  • 2014
  • In: Nature Physics. - 1745-2473. ; 10:11, s. 835-839
  • Journal article (peer-reviewed)abstract
    • Methods to generate spin-polarized electronic states in nonmagnetic solids are strongly desired to enable all-electrical manipulation of electron spins for new quantum devices(1). This is generally accepted to require breaking global structural inversion symmetry(1-5). In contrast, here we report the observation from spin- and angle-resolved photoemission spectroscopy of spin-polarized bulk states in the centrosymmetric transition-metal dichalcogenide WSe2. Mediated by a lack of inversion symmetry in constituent structural units of the bulk crystal where the electronic states are localized(6), we show how spin splittings up to similar to 0.5 eV result, with a spin texture that is strongly modulated in both real and momentum space. Through this, our study provides direct experimental evidence for a putative locking of the spin with the layer and valley pseudospins in transition-metal dichalcogenides(7,8), of key importance for using these compounds in proposed valleytronic devices.
  •  
3.
  • Thiagarajan, Balasubramanian, et al. (author)
  • Spin-valley locking in the normal state of a transition-metal dichacogenide superconductor
  • 2016
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Journal article (peer-reviewed)abstract
    • Metallic transition-metal dichalcogenides (TMDCs) are benchmark systems for studying and controlling intertwined electronic orders in solids, with superconductivity developing from a charge-density wave state. The interplay between such phases is thought to play a critical role in the unconventional superconductivity of cuprates, Fe-based and heavy-fermion systems, yet even for the more moderately-correlated TMDCs, their nature and origins have proved controversial. Here, we study a prototypical example, 2H-NbSe2, by spin- and angle-resolved photoemission and first-principles theory. We find that the normal state, from which its hallmark collective phases emerge, is characterized by quasiparticles whose spin is locked to their valley pseudospin. This results from a combination of strong spin–orbit interactions and local inversion symmetry breaking, while interlayer coupling further drives a rich three-dimensional momentum dependence of the underlying Fermi-surface spin texture. These findings necessitate a re-investigation of the nature of charge order and superconducting pairing in NbSe2 and related TMDCs.
  •  
4.
  • Edwards, B., et al. (author)
  • Giant valleyZeeman coupling in the surface layer of an intercalated transition metal dichalcogenide
  • 2023
  • In: Nature Materials. - : Springer Science and Business Media LLC. - 1476-1122 .- 1476-4660. ; 22:4, s. 459-465
  • Journal article (peer-reviewed)abstract
    • Spin–valley locking is ubiquitous among transition metal dichalcogenides with local or global inversion asymmetry, in turn stabilizing properties such as Ising superconductivity, and opening routes towards ‘valleytronics’. The underlying valley–spin splitting is set by spin–orbit coupling but can be tuned via the application of external magnetic fields or through proximity coupling. However, only modest changes have been realized to date. Here, we investigate the electronic structure of the V-intercalated transition metal dichalcogenide V1/3NbS2 using microscopic-area spatially resolved and angle-resolved photoemission spectroscopy. Our measurements and corresponding density functional theory calculations reveal that the bulk magnetic order induces a giant valley-selective Ising coupling exceeding 50 meV in the surface NbS2 layer, equivalent to application of a ~250 T magnetic field. This energy scale is of comparable magnitude to the intrinsic spin–orbit splittings, and indicates how coupling of local magnetic moments to itinerant states of a transition metal dichalcogenide monolayer provides a powerful route to controlling their valley–spin splittings.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view