SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Balaz M.) srt2:(2010-2014)"

Sökning: WFRF:(Balaz M.) > (2010-2014)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Niman, Cassandra, et al. (författare)
  • Fluidic switching in nanochannels for the control of Inchworm: a synthetic biomolecular motor with a power stroke.
  • 2014
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3372 .- 2040-3364. ; 6:24, s. 15008-15019
  • Tidskriftsartikel (refereegranskat)abstract
    • Synthetic molecular motors typically take nanometer-scale steps through rectification of thermal motion. Here we propose Inchworm, a DNA-based motor that employs a pronounced power stroke to take micrometer-scale steps on a time scale of seconds, and we design, fabricate, and analyze the nanofluidic device needed to operate the motor. Inchworm is a kbp-long, double-stranded DNA confined inside a nanochannel in a stretched configuration. Motor stepping is achieved through externally controlled changes in salt concentration (changing the DNA's extension), coordinated with ligand-gated binding of the DNA's ends to the functionalized nanochannel surface. Brownian dynamics simulations predict that Inchworm's stall force is determined by its entropic spring constant and is ∼0.1 pN. Operation of the motor requires periodic cycling of four different buffers surrounding the DNA inside a nanochannel, while keeping constant the hydrodynamic load force on the DNA. We present a two-layer fluidic device incorporating 100 nm-radius nanochannels that are connected through a few-nm-wide slit to a microfluidic system used for in situ buffer exchanges, either diffusionally (zero flow) or with controlled hydrodynamic flow. Combining experiment with finite-element modeling, we demonstrate the device's key performance features and experimentally establish achievable Inchworm stepping times of the order of seconds or faster.
  •  
2.
  • Persson, Malin, 1983-, et al. (författare)
  • Heavy Meromyosin Molecules Extending More Than 50 nm above Adsorbing Electronegative Surfaces
  • 2010
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 1520-5827 .- 0743-7463. ; 26:12, s. 9927-9936
  • Tidskriftsartikel (refereegranskat)abstract
    • In the in vitro motility assay, actin filaments are propelled by surface-adsorbed myosin motors, or rather, myosin motor fragments such as heavy meromyosin (HMM). Recently, efforts have been made to develop actomyosin powered nanodevices on the basis of this assay but such developments are hampered by limited understanding of the HMM adsorption geometry. Therefore, we here investigate the HMM adsorption geometries on trimethylchlorosilane-[TMCS-] derivatized hydrophobic surfaces and on hydrophilic negatively charged surfaces (SiO2). The TMCS surface is of great relevance in fundamental studies of actomyosin and both surface substrates are important for the development of motor powered nanodevices. Whereas both the TMCS and SiO2 surfaces were nearly saturated with HMM (incubation at 120 mu g mL(-1)) there was little actin binding on SiO2 in the absence of ATP and no filament sliding in the presence of ATP. This contrasts with excellent actin-binding and motility on TMCS. Quartz crystal microbalance with dissipation (QCM-D) studies demonstrate a HMM layer with substantial protein mass up to 40 nm above the TMCS surface, considerably more than observed for myosin subfragment 1 (SI; 6 nm). Together with the excellent actin transportation on TMCS, this strongly suggests that HMM adsorbs to TMCS mainly via its most C-terminal tail part. Consistent with this idea, fluorescence interference contrast (FLIC) microscopy showed that actin filaments are held by HMM 38 +/- 2 nm above the TMCS-surface with the catalytic site, on averge, 20-30 nm above the surface. Viewed in a context with FLIC, QCM-D and TIRF results, the lack of actin motility and the limited actin binding on SiO2 shows that HMM adsorbs largely via the actin-binding region on this surface with the C-terminal coiled-coil tails extending > 50 nm into solution. The results and new insights from this study are of value, not only for the development of motor powered nanodevices but also for the interpretation of fundamental biophysical studies of actomyosin function and for the understanding of surface protein interactions in general.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy