SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Baldauf Sandra) srt2:(2007-2009)"

Sökning: WFRF:(Baldauf Sandra) > (2007-2009)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Atkinson, Gemma C., et al. (författare)
  • Evolution of nonstop, no-go and nonsense-mediated mRNA decay and their termination factor-derived components
  • 2008
  • Ingår i: BMC Evolutionary Biology. - : Springer Science and Business Media LLC. - 1471-2148. ; 8, s. 290-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Members of the eukaryote/archaea specific eRF1 and eRF3 protein families have central roles in translation termination. They are also central to various mRNA surveillance mechanisms, together with the eRF1 paralogue Dom34p and the eRF3 paralogues Hbs1p and Ski7p. We have examined the evolution of eRF1 and eRF3 families using sequence similarity searching, multiple sequence alignment and phylogenetic analysis. Results: Extensive BLAST searches confirm that Hbs1p and eRF3 are limited to eukaryotes, while Dom34p and eRF1 (a/eRF1) are universal in eukaryotes and archaea. Ski7p appears to be restricted to a subset of Saccharomyces species. Alignments show that Dom34p does not possess the characteristic class-1 RF minidomains GGQ, NIKS and YXCXXXF, in line with recent crystallographic analysis of Dom34p. Phylogenetic trees of the protein families allow us to reconstruct the evolution of mRNA surveillance mechanisms mediated by these proteins in eukaryotes and archaea. Conclusion: We propose that the last common ancestor of eukaryotes and archaea possessed Dom34p-mediated no-go decay (NGD). This ancestral Dom34p may or may not have required a trGTPase, mostly like a/eEF1A, for its delivery to the ribosome. At an early stage in eukaryotic evolution, eEF1A was duplicated, giving rise to eRF3, which was recruited for translation termination, interacting with eRF1. eRF3 evolved nonsense-mediated decay (NMD) activity either before or after it was again duplicated, giving rise to Hbs1p, which we propose was recruited to assist eDom34p in eukaryotic NGD. Finally, a third duplication within ascomycete yeast gave rise to Ski7p, which may have become specialised for a subset of existing Hbs1p functions in non-stop decay (NSD). We suggest Ski7p-mediated NSD may be a specialised mechanism for counteracting the effects of increased stop codon read-through caused by prion-domain [ PSI+] mediated eRF3 precipitation.
  •  
2.
  • Baldauf, Sandra L. (författare)
  • An overview of the phylogeny and diversity of eukaryotes
  • 2008
  • Ingår i: Journal of systematics and evolution. - 1674-4918. ; 46:3, s. 263-273
  • Tidskriftsartikel (refereegranskat)abstract
    • Our understanding of eukaryote biology is dominated by the study of land plants, animals and fungi. However, these are only three isolated fragments of the full diversity of extant eukaryotes. The majority of eukaryotes, in terms of major taxa and probably also sheer numbers of cells, consists of exclusively or predominantly unicellular lineages. A surprising number of these lineages are poorly characterized. Nonetheless, they are fundamental to our understanding of eukaryote biology and the underlying forces that shaped it. This article consists of an overview of the current state of our understanding of the eukaryote tree. This includes the identity of the major groups of eukaryotes, some of their important, defining or simply interesting features and the proposed relationships of these groups to each other.
  •  
3.
  • Carr, M., et al. (författare)
  • Molecular phylogeny of choanoflagellates, the sister group to Metazoa
  • 2008
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 105:43, s. 16641-16646
  • Tidskriftsartikel (refereegranskat)abstract
    • Choanoflagellates are single-celled aquatic flagellates with a unique morphology consisting of a cell with a single flagellum surrounded by a "collar" of microvilli. They have long interested evolutionary biologists because of their striking resemblance to the collared cells (choanocytes) of sponges. Molecular phylogeny has confirmed a close relationship between choanoflagellates and Metazoa, and the first choanoflagellate genome sequence has recently been published. However, molecular phylogenetic studies within choanoflagellates are still extremely limited. Thus, little is known about choanoflagellate evolution or the exact nature of the relationship between choanoflagellates and Metazoa. We have sequenced four genes from a broad sampling of the morphological diversity of choanoflagellates including most species currently available in culture. Phylogenetic analyses of these sequences, alone and in combination, reject much of the traditional taxonomy of the group. The molecular data also strongly support choanoflagellate monophyly rejecting proposals that Metazoa were derived from a true choanoflagellate ancestor. Mapping of a complementary matrix of morphological and ecological traits onto the phylogeny allows a reinterpretation of choanoflagellate character evolution and predicts the nature of their last common ancestor.
  •  
4.
  • Carr, Martin, et al. (författare)
  • Three Families of LTR Retrotransposons are Present in the Genome of the Choanoflagellate Monosiga brevicollis
  • 2008
  • Ingår i: Protist. - : Elsevier BV. - 1434-4610 .- 1618-0941. ; 159:4, s. 579-590
  • Tidskriftsartikel (refereegranskat)abstract
    • The choanoflagellates are a ubiquitous group of nanoflagellates and the sister group of Metazoa. Examination of the initial draft version of the first choanoflagellate genome, that of Monosiga brevicollis, reveals the presence of three novel families of long terminal repeat (LTR) retrotransposons and an apparent absence of non-LTR retrotransposons and transposons. One of the newly discovered LTR families falls in the chromovirus clade of the Ty3/gypsy group while the other two families are closely related members of the Ty1/copia group. Examination of EST sequences and nucleotide analyses show that all three families are transcriptionally active and potentially functional within the genome of M. brevicollis.
  •  
5.
  • Davis, Robert, et al. (författare)
  • Eusociality and the success of the termites: insights from a supertree of dictyopteran families.
  • 2009
  • Ingår i: Journal of Evolutionary Biology. - 1010-061X .- 1420-9101. ; 22:8, s. 1750-1761
  • Tidskriftsartikel (refereegranskat)abstract
    • Sociality in insects may negatively impact on species richness. We tested whether termites have experienced shifts in diversification rates through time. Supertree methods were used to synthesize family-level relationships within termites, cockroaches and mantids. A deep positive shift in diversification rate is found within termites, but not in the cockroaches from which they evolved. The shift is responsible for most of their extant species richness suggesting that eusociality is not necessarily detrimental to species richness, and may sometimes have a positive effect. Mechanistic studies of speciation and extinction in eusocial insects are advocated.
  •  
6.
  • Field, Dawn, et al. (författare)
  • The minimum information about a genome sequence (MIGS) specification.
  • 2008
  • Ingår i: Nature biotechnology. - : Springer Science and Business Media LLC. - 1546-1696 .- 1087-0156. ; 26:5, s. 541-7
  • Tidskriftsartikel (refereegranskat)abstract
    • With the quantity of genomic data increasing at an exponential rate, it is imperative that these data be captured electronically, in a standard format. Standardization activities must proceed within the auspices of open-access and international working bodies. To tackle the issues surrounding the development of better descriptions of genomic investigations, we have formed the Genomic Standards Consortium (GSC). Here, we introduce the minimum information about a genome sequence (MIGS) specification with the intent of promoting participation in its development and discussing the resources that will be required to develop improved mechanisms of metadata capture and exchange. As part of its wider goals, the GSC also supports improving the 'transparency' of the information contained in existing genomic databases.
  •  
7.
  •  
8.
  • Gray, Michael A., et al. (författare)
  • The response of avian feeding guilds to tropical forest disturbance.
  • 2007
  • Ingår i: Conservation Biology. - : Wiley. - 0888-8892 .- 1523-1739. ; 21:1, s. 133-141
  • Tidskriftsartikel (refereegranskat)abstract
    • Anthropogenic habitat disturbance is a major threat to tropical forests and understanding the ecological consequences of this disturbance is crucial for the conservation of biodiversity. There have been many attempts to determine the ecological traits associated with bird species' vulnerability to disturbance, but no attempt has been made to synthesize these studies to show consensus. We analyzed data from 57 published studies (covering 1214 bird species) that investigated the response of tropical bird assemblages to moderate forest disturbance (e.g., selective logging). Our results show that the mean abundance of species from six commonly reported feeding guilds responded differently to disturbance and that species' ecological traits (body size, local population size, and geographic range size) and evolutionary relationships may influence responses in some guilds. Granivore abundance increased significantly and insectivore and frugivore abundance decreased significantly following disturbance. These general conclusions were robust to the effects of ecological traits and phylogeny. Responses of carnivores, nectarivores, and omnivores were less clear, but analyses that accounted for phylogeny indicated that these guilds declined following disturbance. In contrast to the other guilds, the reported responses of carnivores and nectarivores differed among regions (Asia vs. Neotropics) and were influenced by the sampling protocols used in different studies (e.g., time since disturbance), which may explain the difficulty in detecting general responses to disturbance in these guilds. Overall, general patterns governed the responses of species to habitat disturbance, and the differential responses of guilds suggested that disturbance affects trophic organization and thus ecosystem functioning.
  •  
9.
  • Leadbeater, Barry, et al. (författare)
  • A new genus, Helgoeca gen. nov., for a nudiform choanoflagellate
  • 2008
  • Ingår i: European Journal of Protistology. - : Elsevier BV. - 0932-4739 .- 1618-0429. ; 44:3, s. 878-889
  • Tidskriftsartikel (refereegranskat)abstract
    • A new genus, Helgoeca gen. nov., has been designated to accommodate a nudiform loricate choanoflagellate (American Type Culture Collection strain ATCC 50073) that was incorrectly attributed to the tectiform genus Acanthoecopsis (=Acanthocorbis). The first indication that this species might be nudiform came from a four-gene phylogeny of the choanoflagellates which recovered ATCC 50073 within a strongly supported monophyletic clade comprising two other nudiform taxa. Fortunately an isolate of the species in question was available from the ATCC and when observed in rapidly growing culture it was immediately apparent that this species divided with the production of 'naked' motile cells; a typically nudiform character. The beaker-shaped lorica of this species consists of an outer layer of approximately 11 longitudinal costae, which terminate anteriorly as spines, and an equal or larger number of helical costae, with a left-handed conformation, each of which terminates anteriorly adjacent to the base of a spine. The pattern of costae in this species is indistinguishable from that of Acanthocorbis nana Thomsen and for this reason A. nana has been transferred to the new genus Helgoeca gen. nov., as the type species.
  •  
10.
  • Peacock, Christopher S, et al. (författare)
  • Comparative genomic analysis of three Leishmania species that cause diverse human disease.
  • 2007
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 39:7, s. 839-847
  • Tidskriftsartikel (refereegranskat)abstract
    • Leishmania parasites cause a broad spectrum of clinical disease. Here we report the sequencing of the genomes of two species of Leishmania: Leishmania infantum and Leishmania braziliensis. The comparison of these sequences with the published genome of Leishmania major reveals marked conservation of synteny and identifies only 200 genes with a differential distribution between the three species. L. braziliensis, contrary to Leishmania species examined so far, possesses components of a putative RNA-mediated interference pathway, telomere-associated transposable elements and spliced leader–associated SLACS retrotransposons. We show that pseudogene formation and gene loss are the principal forces shaping the different genomes. Genes that are differentially distributed between the species encode proteins implicated in host-pathogen interactions and parasite survival in the macrophage.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy