SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bamberger A) srt2:(2015-2019)"

Sökning: WFRF:(Bamberger A) > (2015-2019)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wohlfahrt, G., et al. (författare)
  • An ecosystem-scale perspective of the net land methanol flux : synthesis of micrometeorological flux measurements
  • 2015
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7324. ; 15:13, s. 7413-7427
  • Tidskriftsartikel (refereegranskat)abstract
    • Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of living plants as the major source and the reaction with OH as the major sink of methanol, global methanol budgets diverge considerably in terms of source/sink estimates, reflecting uncertainties in the approaches used to model and the empirical data used to separately constrain these terms. Here we compiled micrometeorological methanol flux data from eight different study sites and reviewed the corresponding literature in order to provide a first cross-site synthesis of the terrestrial ecosystem-scale methanol exchange and present an independent data-driven view of the land-atmosphere methanol exchange. Our study shows that the controls of plant growth on production, and thus the methanol emission magnitude, as well as stomatal conductance on the hourly methanol emission variability, established at the leaf level, hold across sites at the ecosystem level. Unequivocal evidence for bi-directional methanol exchange at the ecosystem scale is presented. Deposition, which at some sites even exceeds methanol emissions, represents an emerging feature of ecosystem-scale measurements and is likely related to environmental factors favouring the formation of surface wetness. Methanol may adsorb to or dissolve in this surface water and eventually be chemically or biologically removed from it. Management activities in agriculture and forestry are shown to increase local methanol emission by orders of magnitude; however, they are neglected at present in global budgets. While contemporary net land methanol budgets are overall consistent with the grand mean of the micrometeorological methanol flux measurements, we caution that the present approach of simulating methanol emission and deposition separately is prone to opposing systematic errors and does not allow for full advantage to be taken of the rich information content of micrometeorological flux measurements.
  •  
2.
  • van Houten, C. B., et al. (författare)
  • Antibiotic misuse in respiratory tract infections in children and adultsa prospective, multicentre study (TAILORED Treatment)
  • 2019
  • Ingår i: European Journal of Clinical Microbiology & Infectious Diseases. - : Springer Science and Business Media LLC. - 0934-9723 .- 1435-4373. ; 38:3, s. 505-514
  • Tidskriftsartikel (refereegranskat)abstract
    • Respiratory tract infections (RTI) are more commonly caused by viral pathogens in children than in adults. Surprisingly, little is known about antibiotic use in children as compared to adults with RTI. This prospective study aimed to determine antibiotic misuse in children and adults with RTI, using an expert panel reference standard, in order to prioritise the target age population for antibiotic stewardship interventions. We recruited children and adults who presented at the emergency department or were hospitalised with clinical presentation of RTI in The Netherlands and Israel. A panel of three experienced physicians adjudicated a reference standard diagnosis (i.e. bacterial or viral infection) for all the patients using all available clinical and laboratory information, including a 28-day follow-up assessment. The cohort included 284 children and 232 adults with RTI (median age, 1.3years and 64.5years, respectively). The proportion of viral infections was larger in children than in adults (209(74%) versus 89(38%), p<0.001). In case of viral RTI, antibiotics were prescribed (i.e. overuse) less frequently in children than in adults (77/209 (37%) versus 74/89 (83%), p<0.001). One (1%) child and three (2%) adults with bacterial infection were not treated with antibiotics (i.e. underuse); all were mild cases. This international, prospective study confirms major antibiotic overuse in patients with RTI. Viral infection is more common in children, but antibiotic overuse is more frequent in adults with viral RTI. Together, these findings support the need for effective interventions to decrease antibiotic overuse in RTI patients of all ages.
  •  
3.
  • Radulov, I. A., et al. (författare)
  • Production of net-shape Mn-Al permanent magnets by electron beam melting
  • 2019
  • Ingår i: Additive Manufacturing. - : Elsevier BV. - 2214-8604 .- 2214-7810. ; 30
  • Tidskriftsartikel (refereegranskat)abstract
    • The main goal of this work is the adoption of additive manufacturing for the production of inexpensive rare-earth free MnAl-based permanent magnets. The use of more advanced binder-free additive manufacturing technique such as Electron Beam Melting (EBM) allows obtaining fully-dense magnetic materials with advanced topology and complex shapes. We focus on the feasibility of controlling the phase formation in additively manufactured Mn-Al alloys by employing post-manufacturing heat treatment. The as-manufactured EBM samples contain 8% of the desired ferromagnetic τ-MnAl phase. After the optimized annealing treatment, the content of the τ-phase was increased to 90%. This sample has a coercivity value of 0.15 T, which is also the maximum achieved in conventionally produced binary MnAl magnets. Moreover, the EBM samples are fully dense and have the same density as the samples produced by conventional melting density. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy