SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bandaru Sashidar) srt2:(2012-2014)"

Sökning: WFRF:(Bandaru Sashidar) > (2012-2014)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bandaru, Sashidar, et al. (författare)
  • Targeting filamin B induces tumor growth and metastasis via enhanced activity of matrix metalloproteinase-9 and secretion of VEGF-A : Role of filamin in tumor growth.
  • 2014
  • Ingår i: Oncogenesis. - : Springer Science and Business Media LLC. - 2157-9024. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • Filamins regulate cell locomotion and associate with diverse signaling molecules. We have recently found that targeting filamin A (FLNA) reduces RAS-induced lung adenocarcinomas. In this study, we explored the role of another major filamin isoform, filamin B (FLNB), in tumor development. In contrast to FLNA, we report that targeting FLNB enhances RAS-induced tumor growth and metastasis which is associated with higher matrix metallopeptidase-9 (MMP-9) and extracellular signal-regulated kinase (ERK) activity. Flnb deficiency in mouse embryonic fibroblasts results in increased proteolytic activity of MMP-9 and cell invasion mediated by the RAS/ERK pathway. Similarly, silencing FLNB in multiple human cancer cells increases the proteolytic activity of MMP-9 and tumor cell invasion. Furthermore, we observed that Flnb-deficient RAS-induced tumors display more capillary structures that is correlated with increased vascular endothelial growth factor-A (VEGF-A) secretion. Inhibition of ERK activation blocks phorbol myristate acetate-induced MMP-9 activity and VEGF-A secretion in vitro. In addition, silencing FLNB in human ovarian cancer cells increases secretion of VEGF-A that induces endothelial cells to form more vascular structures in vitro. We conclude that FLNB suppresses tumor growth and metastasis by regulating the activity of MMP-9 and secretion of VEGF-A which is mediated by the RAS/ERK pathway.
  •  
2.
  • Nallapalli, Rajesh K, et al. (författare)
  • Targeting filamin A reduces K-RAS-induced lung adenocarcinomas and endothelial response to tumor growth in mice
  • 2012
  • Ingår i: Molecular Cancer. - : BioMed Central. - 1476-4598. ; 11:50
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Many human cancer cells express filamin A (FLNA), an actin-binding structural protein that interacts with a diverse set of cell signaling proteins, but little is known about the biological importance of FLNA in tumor development. FLNA is also expressed in endothelial cells, which may be important for tumor angiogenesis. In this study, we defined the impact of targeting Flna in cancer and endothelial cells on the development of tumors in vivo and on the proliferation of fibroblasts in vitro. less thanbrgreater than less thanbrgreater thanMethods: First, we used a Cre-adenovirus to simultaneously activate the expression of oncogenic K-RAS and inactivate the expression of Flna in the lung and in fibroblasts. Second, we subcutaneously injected mouse fibrosarcoma cells into mice lacking Flna in endothelial cells. less thanbrgreater than less thanbrgreater thanResults: Knockout of Flna significantly reduced K-RAS-induced lung tumor formation and the proliferation of oncogenic K-RAS-expressing fibroblasts, and attenuated the activation of the downstream signaling molecules ERK and AKT. Genetic deletion of endothelial FLNA in mice did not impact cardiovascular development; however, knockout of Flna in endothelial cells reduced subcutaneous fibrosarcoma growth and vascularity within tumors. less thanbrgreater than less thanbrgreater thanConclusions: We conclude that FLNA is important for lung tumor growth and that endothelial Flna impacts local tumor growth. The data shed new light on the biological importance of FLNA and suggest that targeting this protein might be useful in cancer therapeutics.
  •  
3.
  • Pandey, Gaurav Kumar, et al. (författare)
  • The risk-associated long noncoding RNA NBAT-1 controls neuroblastoma progression by regulating cell proliferation and neuronal differentiation.
  • 2014
  • Ingår i: Cancer Cell. - : Elsevier BV. - 1535-6108 .- 1878-3686. ; 26:5, s. 722-737
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuroblastoma is an embryonal tumor of the sympathetic nervous system and the most common extracranial tumor of childhood. By sequencing transcriptomes of low- and high-risk neuroblastomas, we detected differentially expressed annotated and nonannotated long noncoding RNAs (lncRNAs). We identified a lncRNA neuroblastoma associated transcript-1 (NBAT-1) as a biomarker significantly predicting clinical outcome of neuroblastoma. CpG methylation and a high-risk neuroblastoma associated SNP on chromosome 6p22 functionally contribute to NBAT-1 differential expression. Loss of NBAT-1 increases cellular proliferation and invasion. It controls these processes via epigenetic silencing of target genes. NBAT-1 loss affects neuronal differentiation through activation of the neuronal-specific transcription factor NRSF/REST. Thus, loss of NBAT-1 contributes to aggressive neuroblastoma by increasing proliferation and impairing differentiation of neuronal precursors.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy