SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Banfi M.) srt2:(2020-2023)"

Sökning: WFRF:(Banfi M.) > (2020-2023)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Panneman, Daan M., et al. (författare)
  • Cost-effective sequence analysis of 113 genes in 1,192 probands with retinitis pigmentosa and Leber congenital amaurosis
  • 2023
  • Ingår i: Frontiers in Cell and Developmental Biology. - : Frontiers Media SA. - 2296-634X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are two groups of inherited retinal diseases (IRDs) where the rod photoreceptors degenerate followed by the cone photoreceptors of the retina. A genetic diagnosis for IRDs is challenging since >280 genes are associated with these conditions. While whole exome sequencing (WES) is commonly used by diagnostic facilities, the costs and required infrastructure prevent its global applicability. Previous studies have shown the cost-effectiveness of sequence analysis using single molecule Molecular Inversion Probes (smMIPs) in a cohort of patients diagnosed with Stargardt disease and other maculopathies. Methods: Here, we introduce a smMIPs panel that targets the exons and splice sites of all currently known genes associated with RP and LCA, the entire RPE65 gene, known causative deep-intronic variants leading to pseudo-exons, and part of the RP17 region associated with autosomal dominant RP, by using a total of 16,812 smMIPs. The RP-LCA smMIPs panel was used to screen 1,192 probands from an international cohort of predominantly RP and LCA cases. Results and discussion: After genetic analysis, a diagnostic yield of 56% was obtained which is on par with results from WES analysis. The effectiveness and the reduced costs compared to WES renders the RP-LCA smMIPs panel a competitive approach to provide IRD patients with a genetic diagnosis, especially in countries with restricted access to genetic testing.
  •  
2.
  • Kuehlewein, Laura, et al. (författare)
  • Clinical phenotype and course of PDE6A-associated retinitis pigmentosa disease, characterized in preparation for a gene supplementation trial
  • 2020
  • Ingår i: JAMA Ophthalmology. - : American Medical Association (AMA). - 2168-6165. ; 138:12, s. 1241-1250
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE Treatment trials require sound knowledge on the natural course of disease. OBJECTIVE To assess clinical features, genetic findings, and genotype-phenotype correlations in patients with retinitis pigmentosa (RP) associated with biallelic sequence variations in the PDE6A gene in preparation for a gene supplementation trial. DESIGN, SETTING, AND PARTICIPANTS This prospective, longitudinal, observational cohort study was conducted from January 2001 to December 2019 in a single center (Centre for Ophthalmology of the University of Tübingen, Germany) with patients recruited multinationally from 12 collaborating European tertiary referral centers. Patients with retinitis pigmentosa, sequence variants in PDE6A, and the ability to provide informed consent were included. EXPOSURES Comprehensive ophthalmological examinations; validation of compound heterozygosity and biallelism by familial segregation analysis, allelic cloning, or assessment of next-generation sequencing-read data, where possible. MAIN OUTCOMES AND MEASURES Genetic findings and clinical features describing the entire cohort and comparing patients harboring the 2 most common disease-causing variants in a homozygous state (c.304C>A;p.(R102S) and c.998 + 1G>A;p.?). RESULTS Fifty-seven patients (32 female patients [56%]; mean [SD], 40 [14] years) from 44 families were included. All patients completed the study. Thirty patients were homozygous for disease-causing alleles. Twenty-seven patients were heterozygous for 2 different PDE6A variants each. The most frequently observed alleles were c.304C>A;p.(R102S), c.998 + 1G>A;p.?, and c.2053G>A;p.(V685M). The mean (SD) best-corrected visual acuity was 0.43 (0.48) logMAR (Snellen equivalent, 20/50). The median visual field area with object III4e was 660 square degrees (5th and 95th percentiles, 76 and 11 019 square degrees; 25th and 75th percentiles, 255 and 3923 square degrees). Dark-adapted and light-adapted full-field electroretinography showed no responses in 88 of 108 eyes (81.5%). Sixty-nine of 108 eyes (62.9%) showed additional findings on optical coherence tomography imaging (eg, cystoid macular edema or macular atrophy). The variant c.998 + 1G>A;p.? led to a more severe phenotype when compared with the variant c.304C>A;p.(R102S). CONCLUSIONS AND RELEVANCE Seventeen of the PDE6A variants found in these patients appeared to be novel. Regarding the clinical findings, disease was highly symmetrical between the right and left eyes and visual impairment was mild or moderate in 90% of patients, providing a window of opportunity for gene therapy.
  •  
3.
  •  
4.
  • Banfi, C, et al. (författare)
  • Prenylcysteine oxidase 1, an emerging player in atherosclerosis
  • 2021
  • Ingår i: Communications biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 4:1, s. 1109-
  • Tidskriftsartikel (refereegranskat)abstract
    • The research into the pathophysiology of atherosclerosis has considerably increased our understanding of the disease complexity, but still many questions remain unanswered, both mechanistically and pharmacologically. Here, we provided evidence that the pro-oxidant enzyme Prenylcysteine Oxidase 1 (PCYOX1), in the human atherosclerotic lesions, is both synthesized locally and transported within the subintimal space by proatherogenic lipoproteins accumulating in the arterial wall during atherogenesis. Further, Pcyox1 deficiency in Apoe-/- mice retards atheroprogression, is associated with decreased features of lesion vulnerability and lower levels of lipid peroxidation, reduces plasma lipid levels and inflammation. PCYOX1 silencing in vitro affects the cellular proteome by influencing multiple functions related to inflammation, oxidative stress, and platelet adhesion. Collectively, these findings identify the pro-oxidant enzyme PCYOX1 as an emerging player in atherogenesis and, therefore, understanding the biology and mechanisms of all functions of this unique enzyme is likely to provide additional therapeutic opportunities in addressing atherosclerosis.
  •  
5.
  • Cucchiara, F, et al. (författare)
  • Electrophysiological features of sleep in children with Kir4.1 channel mutations and Autism-Epilepsy phenotype: a preliminary study
  • 2020
  • Ingår i: Sleep. - : Oxford University Press (OUP). - 1550-9109 .- 0161-8105. ; 43:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Study ObjectivesRecently, a role for gain-of-function (GoF) mutations of the astrocytic potassium channel Kir4.1 (KCNJ10 gene) has been proposed in subjects with Autism–Epilepsy phenotype (AEP). Epilepsy and autism spectrum disorder (ASD) are common and complexly related to sleep disorders. We tested whether well characterized mutations in KCNJ10 could result in specific sleep electrophysiological features, paving the way to the discovery of a potentially relevant biomarker for Kir4.1-related disorders.MethodsFor this case–control study, we recruited seven children with ASD either comorbid or not with epilepsy and/or EEG paroxysmal abnormalities (AEP) carrying GoF mutations of KCNJ10 and seven children with similar phenotypes but wild-type for the same gene, comparing period-amplitude features of slow waves detected by fronto-central bipolar EEG derivations (F3-C3, F4-C4, and Fz-Cz) during daytime naps.ResultsChildren with Kir4.1 mutations displayed longer slow waves periods than controls, in Fz-Cz (mean period = 112,617 ms ± SE = 0.465 in mutated versus mean period = 105,249 ms ± SE = 0.375 in controls, p < 0.001). An analog result was found in F3-C3 (mean period = 125,706 ms ± SE = 0.397 in mutated versus mean period = 120,872 ms ± SE = 0.472 in controls, p < 0.001) and F4-C4 (mean period = 127,914 ms ± SE = 0.557 in mutated versus mean period = 118,174 ms ± SE = 0.442 in controls, p < 0.001).ConclusionThis preliminary finding suggests that period-amplitude slow wave features are modified in subjects carrying Kir4.1 GoF mutations. Potential clinical applications of this finding are discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy