SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bang N) srt2:(2000-2004)"

Sökning: WFRF:(Bang N) > (2000-2004)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Åberg, Maria A I, 1972, et al. (författare)
  • IGF-I has a direct proliferative effect in adult hippocampal progenitor cells.
  • 2003
  • Ingår i: Molecular and cellular neurosciences. - 1044-7431. ; 24:1, s. 23-40
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of the present study was to investigate the potential direct effects of insulin-like growth factor-I (IGF-I) on adult rat hippocampal stem/progenitor cells (AHPs). IGF-I-treated cultures showed a dose-dependent increase in thymidine incorporation, total number of cells, and number of cells entering the mitosis phase. Pretreatment with fibroblast growth factor-2 (FGF-2) increased the IGF-I receptor (IGF-IR) expression, and both FGF-2 and IGF-I were required for maximal proliferation. Time-lapse recordings showed that IGF-I at 100 ng/ml decreased differentiation and increased proliferation of single AHPs. Specific inhibition of mitogen-activated protein kinase kinase (MAPKK), phosphatidylinositol 3-kinase (PI3-K), or the downstream effector of the PI3-K pathway, serine/threonine p70 S6 kinase (p70(S6K)), showed that both the MAPK and the PI3-K pathways participate in IGF-I-induced proliferation but that the MAPK activation is obligatory. These results were confirmed with dominant-negative constructs for these pathways. Stimulation of differentiation was found at a low dose (1 ng/ml) of IGF-I, clonal analysis indicating an instructive component of IGF-I signaling.
  •  
3.
  • Åberg, N David, 1970, et al. (författare)
  • Insulin-like growth factor-I increases astrocyte intercellular gap junctional communication and connexin43 expression in vitro.
  • 2003
  • Ingår i: Journal of neuroscience research. - : Wiley. - 0360-4012. ; 74:1, s. 12-22
  • Tidskriftsartikel (refereegranskat)abstract
    • Connexin43 (cx43) forms gap junctions in astrocytes, and these gap junctions mediate intercellular communication by providing transport of low-molecular-weight metabolites and ions. We have recently shown that systemic growth hormone increases cx43 in the brain. One possibility was that local brain insulin-like growth factor-I (IGF-I) could mediate the effect by acting directly on astrocytes. In the present study, we examined the effects of direct application of recombinant human IGF-I (rhIGF-I) on astrocytes in primary culture concerning cx43 protein expression and gap junctional communication (GJC). After 24 hr of stimulation with rhIGF-I under serum-free conditions, the GJC and cx43 protein were analyzed. Administration of 30 ng/ml rhIGF-I increased the GJC and the abundance of cx43 protein. Cell proliferation of the astrocytes was not significantly increased by rhIGF-I at this concentration. However, a higher concentration of rhIGF-I (150 ng/ml) had no effect on GJC/cx43 but increased cell proliferation. Because of the important modulatory role of IGF binding proteins (IGFBPs) on IGF-I action, we analyzed IGFBPs in conditioned media. In cultures with a low abundance of IGFBPs (especially IGFBP-2), the GJC response to 30 ng/ml rhIGF-I was 81%, compared with the average of 25%. Finally, as a control, insulin was given in equimolar concentrations. However, GJC was not affected, which suggests that rhIGF-I acted via IGF-I receptors. In summary, the data show that rhIGF-I may increase GJC/cx43, whereas a higher concentration of rhIGF-I--at which stimulation of proliferation occurred--did not affect GJC/cx43. Furthermore, IGFBP-2 appeared to modulate the action of rhIGF-I on GJC in astrocytes by a paracrine mechanism.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy