SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bankell Elisabeth) srt2:(2021)"

Sökning: WFRF:(Bankell Elisabeth) > (2021)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aidoukovitch, Alexandra, et al. (författare)
  • Exogenous LL-37 but not homogenates of desquamated oral epithelial cells shows activity against Streptococcus mutans
  • 2021
  • Ingår i: Acta Odontologica Scandinavica. - : Informa UK Limited. - 0001-6357 .- 1502-3850. ; 79:6, s. 466-472
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The antimicrobial peptide hCAP18/LL-37 is detected in desquamated epithelial cells of human whole saliva, but the functional importance of this pool of hCAP18/LL-37 is not understood. Here, we assess the impact of homogenates of desquamated oral epithelial cells and exogenous, synthetic LL-37 on two oral bacteria: S. mutans and S. gordonii. Material and methods: Desquamated epithelial cells of unstimulated whole saliva were isolated and cellular and extracellular levels of hCAP18/LL-37 analyzed by ELISA. Bacterial viability was determined by BacLight Live/Dead staining and confocal laser scanning microscopy. Results: Desquamated oral epithelial cells harboured hCAP18/LL-37, and they spontaneously released/leaked the peptide to their medium. Exogenous, synthetic LL-37 showed cytotoxic activity against S. mutans but not S gordonii, suggesting that LL-37 acts differentially on these two types of oral bacteria. Homogenates of desquamated oral epithelial cells had no effect on S. mutans viability. Treatment with exogenous, synthetic LL-37 (8 and 10 μM) reduced S. mutans viability, whereas lower concentrations (0.1 and 1 µM) of the peptide lacked effect. Conclusions: Desquamated oral epithelial cells contain hCAP18/LL-37, but their cellular levels of hCAP18/LL-37 are too low to affect S. mutans viability, whereas exogenous, synthetic LL-37 has a strong effect on these bacteria.
  •  
2.
  • Bankell, Elisabeth, et al. (författare)
  • LL-37-induced caspase-independent apoptosis is associated with plasma membrane permeabilization in human osteoblast-like cells
  • 2021
  • Ingår i: Peptides. - : Elsevier BV. - 0196-9781 .- 1873-5169. ; 135
  • Tidskriftsartikel (refereegranskat)abstract
    • The host defense peptide LL-37 is active against both gram-positive and gram-negative bacteria, but it has also been shown to reduce human host cell viability. However, the mechanisms behind LL-37-induced human host cell cytotoxicity are not yet fully understood. Here, we assess if LL-37-evoked attenuation of human osteoblast-like MG63 cell viability is associated with apoptosis, and if the underlying mechanism may involve LL-37-induced plasma membrane permeabilization. MG63 cell viability and plasma membrane permeabilization were investigated by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method and by measuring lactate dehydrogenase (LDH) release, respectively. Apoptosis was assessed by the terminal deoxynucleotidyl dUTP nick end labeling (TUNEL) assay and Annexin V flow cytometry, and caspase-3 and poly (ADP-ribose) polymerase (PARP) cleavage were determined by Western blot. LL-37 (4 and 10 μM) reduced both cell number and cell viability, and these effects were associated with a pro-apoptotic effect demonstrated by positive TUNEL staining and Annexin V flow cytometry. LL-37-induced apoptosis was not coupled to either caspase-3 or PARP cleavage, suggesting that LL-37 causes caspase-independent apoptosis in MG63 cells. Both LL-37 and the well-known plasma membrane permeabilizer Triton X-100 reduced cell viability and stimulated LDH release. Triton X-100-treated cells showed positive TUNEL staining, and the detergent accumulated cells in late apoptosis/necrosis. Similar to LL-37, Triton X-100 caused no PARP cleavage. We conclude that LL-37 promotes caspase-independent apoptosis, and that this effect seems coupled to plasma membrane permeabilization in human MG63 cells.
  •  
3.
  • Liu, Li, et al. (författare)
  • Cell Type Dependent Suppression of Inflammatory Mediators by Myocardin Related Transcription Factors
  • 2021
  • Ingår i: Frontiers in Physiology. - : Frontiers Media SA. - 1664-042X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Myocardin related transcription factors (MRTFs: MYOCD/myocardin, MRTF-A, and MRTF-B) play a key role in smooth muscle cell differentiation by activating contractile genes. In atherosclerosis, MRTF levels change, and most notable is a fall of MYOCD. Previous work described anti-inflammatory properties of MRTF-A and MYOCD, occurring through RelA binding, suggesting that MYOCD reduction could contribute to vascular inflammation. Recent studies have muddled this picture showing that MRTFs may show both anti- and pro-inflammatory properties, but the basis of these discrepancies remain unclear. Moreover, the impact of MRTFs on inflammatory signaling pathways in tissues relevant to human arterial disease is uncertain. The current work aimed to address these issues. RNA-sequencing after forced expression of myocardin in human coronary artery smooth muscle cells (hCASMCs) showed reduction of pro-inflammatory transcripts, including CCL2, CXCL8, IL6, and IL1B. Side-by-side comparison of MYOCD, MRTF-A, and MRTF-B in hCASMCs, showed that the anti-inflammatory impact was shared among MRTFs. Correlation analyses using human arterial transcriptomic datasets revealed negative correlations between MYOCD, MRTFA, and SRF, on the one hand, and the inflammatory transcripts, on the other. A pro-inflammatory drive from lipopolysaccharide, did not change the size of the suppressive effect of MRTF-A in hCASMCs on either mRNA or protein levels. To examine cell type-dependence, we compared the anti-inflammatory impact in hCASMCs, with that in human bladder SMCs, in endothelial cells, and in monocytes (THP-1 cells). Surprisingly, little anti-inflammatory activity was seen in endothelial cells and monocytes, and in bladder SMCs, MRTF-A was pro-inflammatory. CXCL8, IL6, and IL1B were increased by the MRTF-SRF inhibitor CCG-1423 and by MRTF-A silencing in hCASMCs, but depolymerization of actin, known to inhibit MRTF activity, had no stimulatory effect, an exception being IL1B. Co-immunoprecipitation supported binding of MRTF-A to RelA, supporting sequestration of this important pro-inflammatory mediator as a mechanism. Dexamethasone treatment and silencing of RelA (by 76 ± 1%) however only eliminated a fraction of the MRTF-A effect (≈25%), suggesting mechanisms beyond RelA binding. Indeed, SRF silencing suggested that MRTF-A suppression of IL1B and CXCL8 depends on SRF. This work thus supports an anti-inflammatory impact of MRTF-SRF signaling in hCASMCs and in intact human arteries, but not in several other cell types.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy