SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Banks RE) srt2:(2006-2009)"

Search: WFRF:(Banks RE) > (2006-2009)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Landgren, O, et al. (author)
  • Risk factors for lymphoproliferative disorders after allogeneic hematopoietic cell transplantation
  • 2009
  • In: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 113:20, s. 4992-5001
  • Journal article (peer-reviewed)abstract
    • We evaluated 26 901 patients who underwent allogeneic hematopoietic cell transplantation (HCT) at 271 centers worldwide to define patterns of posttransplantation lymphoproliferative disorders (PTLDs). PTLDs developed in 127 recipients, with 105 (83%) cases occurring within 1 year after transplantation. In multivariate analyses, we confirmed that PTLD risks were strongly associated (P < .001) with T-cell depletion of the donor marrow, antithymocyte globulin (ATG) use, and unrelated or HLA-mismatched grafts (URD/HLA mismatch). Significant associations were also confirmed for acute and chronic graft-versus-host disease. The increased risk associated with URD/HLA-mismatched donors (RR = 3.8) was limited to patients with T-cell depletion or ATG use (P = .004). New findings were elevated risks for age 50 years or older at transplantation (RR = 5.1; P < .001) and second transplantation (RR = 3.5; P < .001). Lower risks were found for T-cell depletion methods that remove both T and B cells (alemtuzumab and elutriation, RR = 3.1; P = .025) compared with other methods (RR = 9.4; P = .005 for difference). The cumulative incidence of PTLDs was low (0.2%) among 21 686 patients with no major risk factors, but increased to 1.1%, 3.6%, and 8.1% with 1, 2, and more than 3 major risk factors, respectively. Our findings identify subgroups of patients who underwent allogeneic HCT at elevated risk of PTLDs for whom prospective monitoring of Epstein-Barr virus activation and early treatment intervention may be particularly beneficial.
  •  
2.
  • Schael, S, et al. (author)
  • Precision electroweak measurements on the Z resonance
  • 2006
  • In: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 427:5-6, s. 257-454
  • Research review (peer-reviewed)abstract
    • We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLID experiment using a polarised beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarised asymmetries. The mass and width of the Z boson, m(Z) and Gamma(Z), and its couplings to fermions, for example the p parameter and the effective electroweak mixing angle for leptons, are precisely measured: m(Z) = 91.1875 +/- 0.0021 GeV, Gamma(Z) = 2.4952 +/- 0.0023 GeV, rho(l) = 1.0050 +/- 0.0010, sin(2)theta(eff)(lept) = 0.23153 +/- 0.00016. The number of light neutrino species is determined to be 2.9840 +/- 0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model (SM). At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. Of the many Z-pole measurements, the forward-backward asymmetry in b-quark production shows the largest difference with respect to its SM expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, m(t) = 173(+10)(+13) GeV, and the mass of the W boson, m(W) = 80.363 +/- 0.032 GeV. These indirect constraints are compared to the direct measurements, providing a stringent test of the SM. Using in addition the direct measurements of m(t) and m(W), the mass of the as yet unobserved SM Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than 285 GeV at 95% confidence level. (c) 2006 Elsevier B.V. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view