SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bapat B) "

Sökning: WFRF:(Bapat B)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Thompson, B.A., et al. (författare)
  • Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database
  • 2014
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 46:2, s. 107-115
  • Tidskriftsartikel (refereegranskat)abstract
    • The clinical classification of hereditary sequence variants identified in disease-related genes directly affects clinical management of patients and their relatives. The International Society for Gastrointestinal Hereditary Tumours (InSiGHT) undertook a collaborative effort to develop, test and apply a standardized classification scheme to constitutional variants in the Lynch syndrome-associated genes MLH1, MSH2, MSH6 and PMS2. Unpublished data submission was encouraged to assist in variant classification and was recognized through microattribution. The scheme was refined by multidisciplinary expert committee review of the clinical and functional data available for variants, applied to 2,360 sequence alterations, and disseminated online. Assessment using validated criteria altered classifications for 66% of 12,006 database entries. Clinical recommendations based on transparent evaluation are now possible for 1,370 variants that were not obviously protein truncating from nomenclature. This large-scale endeavor will facilitate the consistent management of families suspected to have Lynch syndrome and demonstrates the value of multidisciplinary collaboration in the curation and classification of variants in public locus-specific databases. © 2014 Nature America, Inc.
  •  
2.
  • van Eijsden, R. G. E., et al. (författare)
  • A universal fixation method based on quaternary ammonium salts (RNAlater) for omics-technologies: Saccharomyces cerevisiae as a case study
  • 2013
  • Ingår i: Biotechnology Letters. - : Springer Science and Business Media LLC. - 1573-6776 .- 0141-5492. ; 35:6, s. 891-900
  • Tidskriftsartikel (refereegranskat)abstract
    • Genomics, transcriptomics, proteomics and fluxomics are powerful omics-technologies that play a major role in today's research. For each of these techniques good sample quality is crucial. Major factors contributing to the quality of a sample is the actual sampling procedure itself and the way the sample is stored directly after sampling. It has already been described that RNAlater can be used to store tissues and cells in a way that the RNA quality and quantity are preserved. In this paper, we demonstrate that quaternary ammonium salts (RNAlater) are also suitable to preserve and store samples from Saccharomyces cerevisiae for later use with the four major omics-technologies. Moreover, it is shown that RNAlater also preserves the cell morphology and the potential to recover growth, permitting microscopic analysis and yeast cell culturing at a later stage.
  •  
3.
  • Aguilar-Calvo, Patricia, et al. (författare)
  • Neuronal Ndst1 depletion accelerates prion protein clearance and slows neurodegeneration in prion infection
  • 2023
  • Ingår i: PLoS Pathogens. - : PUBLIC LIBRARY SCIENCE. - 1553-7366 .- 1553-7374. ; 19:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Select prion diseases are characterized by widespread cerebral plaque-like deposits of amyloid fibrils enriched in heparan sulfate (HS), a major extracellular matrix component. HS facilitates fibril formation in vitro, yet how HS impacts fibrillar plaque growth within the brain is unclear. Here we found that prion-bound HS chains are highly sulfated, and that the sulfation is essential for accelerating prion conversion in vitro. Using conditional knockout mice to deplete the HS sulfation enzyme, Ndst1 (N-deacetylase / N-sulfotransferase), from neurons or astrocytes, we then investigated how reducing HS sulfation impacts survival and prion aggregate distribution during a prion infection. Neuronal Ndst1-depleted mice survived longer and showed fewer and smaller parenchymal plaques, shorter fibrils, and increased vascular amyloid, consistent with enhanced aggregate transit toward perivascular drainage channels. The prolonged survival was strain-dependent, only affecting mice infected with extracellular, plaque-forming, but not membrane bound, prions. Live PET imaging revealed rapid clearance of recombinant prion protein monomers into the CSF of mice expressing unsulfated HS, further suggesting that HS sulfate groups hinder transit of extracellular prion protein monomers. Our results directly show how a host cofactor slows the spread of prion protein through the extracellular space and identify an enzyme to target to facilitate aggregate clearance. Prions cause a rapidly progressive neurologic disease and death with no curative treatment available. Prion aggregates accumulate exponentially in the brain of affected individuals triggering neuronal loss and neuroinflammation, yet the molecules that facilitate prion protein aggregation are largely unknown. We have found that prions in the brain preferentially bind to a highly sulfated endogenous polysaccharide, known as heparan sulfate (HS). Here we use genetically modified mice that express poorly sulfated, neuron-derived HS, and infect mice with different prions strains. We find that mice infected with a plaque-forming prion strain show a prolonged survival and fewer plaques compared to controls. We also found that recombinant prion protein was efficiently transported within the interstitial fluid of mice having poorly sulfated HS, suggesting more efficient clearance from the brain. Our study provides insight into how HS retains prion aggregates in the brain to accelerate disease and indicates a specific HS biosynthetic enzyme to target to enhance protein clearance.
  •  
4.
  •  
5.
  • Lin, Amy Erica, et al. (författare)
  • Clonal Hematopoiesis of Indeterminate Potential With Loss of Tet2 Enhances Risk for Atrial Fibrillation Through Nlrp3 Inflammasome Activation
  • 2024
  • Ingår i: Circulation. - 0009-7322. ; 149:18, s. 1419-1434
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Clonal hematopoiesis of indeterminate potential (CHIP), a common age-associated phenomenon, associates with increased risk of both hematological malignancy and cardiovascular disease. Although CHIP is known to increase the risk of myocardial infarction and heart failure, the influence of CHIP in cardiac arrhythmias, such as atrial fibrillation (AF), is less explored. METHODS: CHIP prevalence was determined in the UK Biobank, and incident AF analysis was stratified by CHIP status and clone size using Cox proportional hazard models. Lethally irradiated mice were transplanted with hematopoietic-specific loss of Tet2, hematopoietic-specific loss of Tet2 and Nlrp3, or wild-type control and fed a Western diet, compounded with or without NLRP3 (NLR [NACHT, LRR {leucine rich repeat}] family pyrin domain containing protein 3) inhibitor, NP3-361, for 6 to 9 weeks. Mice underwent in vivo invasive electrophysiology studies and ex vivo optical mapping. Cardiomyocytes from Ldlr−/− mice with hematopoietic-specific loss of Tet2 or wild-type control and fed a Western diet were isolated to evaluate calcium signaling dynamics and analysis. Cocultures of pluripotent stem cell-derived atrial cardiomyocytes were incubated with Tet2deficient bone marrow-derived macrophages, wild-type control, or cytokines IL-1β (interleukin 1β) or IL-6 (interleukin 6). RESULTS: Analysis of the UK Biobank showed individuals with CHIP, in particular TET2 CHIP, have increased incident AF. Hematopoietic-specific inactivation of Tet2 increases AF propensity in atherogenic and nonatherogenic mouse models and is associated with increased Nlrp3 expression and CaMKII (Ca2+/calmodulin-dependent protein kinase II) activation, with AF susceptibility prevented by inactivation of Nlrp3. Cardiomyocytes isolated from Ldlr−/− mice with hematopoietic inactivation of Tet2 and fed a Western diet have impaired calcium release from the sarcoplasmic reticulum into the cytosol, contributing to atrial arrhythmogenesis. Abnormal sarcoplasmic reticulum calcium release was recapitulated in cocultures of cardiomyocytes with the addition of Tet2-deficient macrophages or cytokines IL-1β or IL-6. CONCLUSIONS: We identified a modest association between CHIP, particularly TET2 CHIP, and incident AF in the UK Biobank population. In a mouse model of AF resulting from hematopoietic-specific inactivation of Tet2, we propose altered calcium handling as an arrhythmogenic mechanism, dependent on Nlrp3 inflammasome activation. Our data are in keeping with previous studies of CHIP in cardiovascular disease, and further studies into the therapeutic potential of NLRP3 inhibition for individuals with TET2 CHIP may be warranted.
  •  
6.
  • Patil, K. R., et al. (författare)
  • Structure and flux analysis of metabolic networks
  • 2009
  • Ingår i: The Metabolic Pathway Engineering Handbook: Fundamentals. - 9781439802977 ; , s. 17 1-17 18
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Conceptual understanding of complex cellular organization can be facilitated through a perspective based on the central dogma of biology1 (Figure 17.1). Accordingly, information coded in a genome is translated into proteins via mRNA. Proteins play a variety of roles in a cell, including that of enzymes, which selectively catalyze chemical transformation between metabolites. Ensemble of all nongenetically encoded compounds (thus, excluding mRNA, proteins, etc.) and enzymes operating on them is generally referred to as a metabolic network.2 In essence, metabolic networks convert nutrients available from environment into fundamental building blocks for the synthesis of proteins, DNA, and other cellular components. By providing energy and building blocks for growth and maintenance of cells, metabolic networks play a central role in sustaining life. is key role of metabolic networks in cellular operations is evident by two facts. Firstly, the basic architecture of metabolic networks is largely conserved across several dierent species ranging from microscopic bacteria to humans.3 Second, cellular response and adaptation to genetic/environmental perturbations is oen mediated through or reected in the operation of metabolic networks.4 Although the structure of metabolic networks dier signicantly at local levels (e.g., specic pathway structures),3,5 their large-scale conservancy across dierent species implies common biochemical and evolutionary principles underlying their operation.6,7 Understanding such general principles has great implications for: (i) correlating and extrapolating knowledge across dierent species, especially from model organisms (such as yeast) to humans, (ii) devising rational strategies for metabolic engineering, iii) nding remedies for metabolism related diseases, and (iv) synthetic biology.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy