SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Barabash S.) srt2:(2010-2014)"

Sökning: WFRF:(Barabash S.) > (2010-2014)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brain, D., et al. (författare)
  • A comparison of global models for the solar wind interaction with Mars
  • 2010
  • Ingår i: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 206:1, s. 139-151
  • Tidskriftsartikel (refereegranskat)abstract
    • We present initial results from the first community-wide effort to compare global plasma interaction model results for Mars. Seven modeling groups participated in this activity, using MHD, multi-fluid, and hybrid assumptions in their simulations. Moderate solar wind and solar EUV conditions were chosen, and the conditions were implemented in the models and run to steady state. Model output was compared in three ways to determine how pressure was partitioned and conserved in each model, the location and asymmetry of plasma boundaries and pathways for planetary ion escape, and the total escape flux of planetary oxygen ions. The two participating MHD models provided similar results, while the five sets of multi-fluid and hybrid results were different in many ways. All hybrid results, however, showed two main channels for oxygen ion escape (a pickup ion 'plume' in the hemisphere toward which the solar wind convection electric field is directed, and a channel in the opposite hemisphere of the central magnetotail), while the MHD models showed one (a roughly symmetric channel in the central magnetotail). Most models showed a transition from an upstream region dominated by plasma dynamic pressure to a magnetosheath region dominated by thermal pressure to a low altitude region dominated by magnetic pressure. However, calculated escape rates for a single ion species varied by roughly an order of magnitude for similar input conditions, suggesting that the uncertainties in both the current and integrated escape over martian history as determined by models are large. These uncertainties are in addition to those associated with the evolution of the Sun, the martian dynamo, and the early atmosphere, highlighting the challenges we face in constructing Mars' past using models.
  •  
2.
  • Edberg, Niklas, et al. (författare)
  • Pumping out the atmosphere of Mars through solar wind pressure pulses
  • 2010
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 37, s. L03107-
  • Tidskriftsartikel (refereegranskat)abstract
    • We study atmospheric escape from Mars during solar wind pressure pulses. During the solar minimum of 2007 08 we have observed 41 high pressure events, which are predominantly identified as corotating interaction regions (CIR) while a few are coronal mass ejections (CME), in data from the Advanced Composition Explorer (ACE) upstream of the Earth. 36 of these events are also identified using Mars Express (MEX) data at Mars. We use MEX measurements at Mars to compare the antisunward fluxes of heavy planetary ions during the passage of these pulses to the fluxes during quiet solar wind conditions. The ion fluxes are observed to increase by a factor of similar to 2.5, on average. Hence, a third of the total outflow from Mars takes place during similar to 15% of the time, when a solar wind pressure pulse impacts on the planet. This can have important consequences for the total time-integrated outflow of plasma from Mars.
  •  
3.
  • Arridge, Christopher S., et al. (författare)
  • Uranus Pathfinder : exploring the origins and evolution of Ice Giant planets
  • 2012
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 33:2-3, s. 753-791
  • Tidskriftsartikel (refereegranskat)abstract
    • The "Ice Giants" Uranus and Neptune are a different class of planet compared to Jupiter and Saturn. Studying these objects is important for furthering our understanding of the formation and evolution of the planets, and unravelling the fundamental physical and chemical processes in the Solar System. The importance of filling these gaps in our knowledge of the Solar System is particularly acute when trying to apply our understanding to the numerous planetary systems that have been discovered around other stars. The Uranus Pathfinder (UP) mission thus represents the quintessential aspects of the objectives of the European planetary community as expressed in ESA's Cosmic Vision 2015-2025. UP was proposed to the European Space Agency's M3 call for medium-class missions in 2010 and proposed to be the first orbiter of an Ice Giant planet. As the most accessible Ice Giant within the M-class mission envelope Uranus was identified as the mission target. Although not selected for this call the UP mission concept provides a baseline framework for the exploration of Uranus with existing low-cost platforms and underlines the need to develop power sources suitable for the outer Solar System. The UP science case is based around exploring the origins, evolution, and processes at work in Ice Giant planetary systems. Three broad themes were identified: (1) Uranus as an Ice Giant, (2) An Ice Giant planetary system, and (3) An asymmetric magnetosphere. Due to the long interplanetary transfer from Earth to Uranus a significant cruise-phase science theme was also developed. The UP mission concept calls for the use of a Mars Express/Rosetta-type platform to launch on a Soyuz-Fregat in 2021 and entering into an eccentric polar orbit around Uranus in the 2036-2037 timeframe. The science payload has a strong heritage in Europe and beyond and requires no significant technology developments.
  •  
4.
  • Edberg, Niklas J. T., et al. (författare)
  • Atmospheric erosion of Venus during stormy space weather
  • 2011
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 116, s. A09308-
  • Tidskriftsartikel (refereegranskat)abstract
    • We study atmospheric escape from Venus during solar minimum conditions when 147 corotating interaction regions (CIRs) and interplanetary coronal mass ejections (ICMEs) combined impact on the planet. This is the largest study to date of the effects of stormy space weather on Venus and we show for the first time statistically that the atmosphere of Venus is significantly affected by CIRs and ICMEs. When such events impact on Venus, as observed by the ACE and Venus Express satellites, the escape rate of Venus's ionosphere is measured to increase by a factor of 1.9, on average, compared to quiet solar wind times. However, the increase in escape flux during impacts can occasionally be significantly larger by orders of magnitude. Taking into account the occurrence rate of such events we find that roughly half (51%) of the outflow occurs during stormy space weather. Furthermore, we particularly discuss the importance of the increased solar wind dynamic pressure as well as the polarity change of the interplanetary magnetic field (IMF) in terms of causing the increase escape rate. The IMF polarity change across a CIR/ICME could cause dayside magnetic reconnection processes to occur in the induced magnetosphere of Venus, which would add to the erosion through associated particle acceleration.
  •  
5.
  • Edberg, Niklas J. T., et al. (författare)
  • Magnetosonic Mach number effect of the position of the bow shock at Mars in comparison to Venus
  • 2010
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 115, s. A07203-
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the effect of the magnetosonic Mach number on the position of the bow shock (BS) at Mars. The magnetosonic Mach number is calculated from solar wind data obtained by the ACE satellite upstream of Earth and extrapolated to Mars during two intervals, starting in 2005 and 2007, when Mars and Earth were close to opposition. An increased Mach number is observed to cause the Martian BS to move to lower altitudes and the variation in the terminator altitude is proportional to the Mach number change. When the Mach number is lowered, the BS flares more. We also compare our results to previous studies at Venus. The variation in BS altitude with magnetosonic Mach number is found to be very similar to the variation of the Venusian BS, which has previously been shown to decrease linearly in altitude with increasing Mach number.
  •  
6.
  • Barabash, Victoria, et al. (författare)
  • Electron density profiles in the quiet lower ionosphere based on the results of modeling and experimental data
  • 2012
  • Ingår i: Annales Geophysicae. - : European Geosciences Union (EGU). - 0992-7689 .- 1432-0576. ; 30:9, s. 1345-1360
  • Tidskriftsartikel (refereegranskat)abstract
    • The theoretical PGI (Polar Geophysical Institute) model for the quiet lower ionosphere has been applied for computing the ionization rate and electron density profiles in the summer and winter D-region at solar zenith angles less than 80° and larger than 99° under steady state conditions. In order to minimize possible errors in estimation of ionization rates provided by solar electromagnetic radiation and to obtain the most exact values of electron density, each wavelength range of the solar spectrum has been divided into several intervals and the relations between the solar radiation intensity at these wavelengths and the solar activity index F10.7 have been incorporated into the model. Influence of minor neutral species (NO, H2O, O, O3) concentrations on the electron number density at different altitudes of the sunlit quiet D-region has been examined. The results demonstrate that at altitudes above 70 km, the modeled electron density is most sensitive to variations of nitric oxide concentration. Changes of water vapor concentration in the whole altitude range of the mesosphere influence the electron density only in the narrow height interval 73–85 km. The effect of the change of atomic oxygen and ozone concentration is the least significant and takes place only below 70 km. Model responses to changes of the solar zenith angle, solar activity (low–high) and season (summer–winter) have been considered. Modeled electron density profiles have been evaluated by comparison with experimental profiles available from the rocket measurements for the same conditions. It is demonstrated that the theoretical model for the quiet lower ionosphere is quite effective in describing variations in ionization rate, electron number density and effective recombination coefficient as functions of solar zenith angle, solar activity and season. The model may be used for solving inverse tasks, in particular, for estimations of nitric oxide concentration in the mesosphere.
  •  
7.
  • Brinkfeldt, Klas, et al. (författare)
  • Microshutters for MEMS-based time-of-flight measurements in space
  • 2011
  • Ingår i: Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS). - 1084-6999. - 9781424496327 ; , s. 597-600
  • Konferensbidrag (refereegranskat)abstract
    • This paper reports on the fabrication, integration and first operation of a mechanical microshutter in a time-of-flight (TOF) based ion detector in space. The microshutter is fabricated from a silicon on insulator (SOI) wafer and operated in a resonance mode, 306 kHz. Open time of the shutter is 100 ns. The microshutters are integrated in the PRIMA instrument, which is part of the payload on the Swedish PRISMA mission. PRISMA was successfully launched into low Earth orbit on June 15, 2010.
  •  
8.
  • Dhanaya, M. B., et al. (författare)
  • Proton entry into the near-lunar plasma wake for magnetic field aligned flow
  • 2013
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 40:2, s. 2913-2917
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the first observation of protons in the near-lunar (100–200 km from the surface) and deeper (near anti-subsolar point) plasma wake when the interplanetary magnetic field (IMF) and solar wind velocity (vsw) are parallel (aligned flow; angle between IMF and vsw≤10°). More than 98% of the observations during aligned flow condition showed the presence of protons in the wake. These observations are obtained by the Solar Wind Monitor sensor of the Sub-keV Atom Reflecting Analyser experiment on Chandrayaan-1. The observation cannot be explained by the conventional fluid models for aligned flow. Back tracing of the observed protons suggests that their source is the solar wind. The larger gyroradii of the wake protons compared to that of solar wind suggest that they were part of the tail of the solar wind velocity distribution function. Such protons could enter the wake due to their large gyroradii even when the flow is aligned to IMF. However, the wake boundary electric field may also play a role in the entry of the protons into the wake.
  •  
9.
  • Futaana, Y, et al. (författare)
  • Remote energetic neutral atom imaging of electric potential over a lunar magnetic anomaly
  • 2013
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 40:2, s. 262-266
  • Tidskriftsartikel (refereegranskat)abstract
    • The formation of electric potential over lunar magnetized regions is essential for understanding fundamental lunar science, for understanding the lunar environment, and for planning human exploration on the Moon. A large positive electric potential was predicted and detected from single point measurements. Here, we demonstrate a remote imaging technique of electric potential mapping at the lunar surface, making use of a new concept involving hydrogen neutral atoms derived from solar wind. We apply the technique to a lunar magnetized region using an existing dataset of the neutral atom energy spectrometer SARA/CENA on Chandrayaan-1. Electrostatic potential larger than +135 V inside the Gerasimovic anomaly is confirmed. This structure is found spreading all over the magnetized region. The widely spread electric potential can influence the local plasma and dust environment near the magnetic anomaly. Citation: Futaana, Y., S. Barabash, M. Wieser, C. Lue, P. Wurz, A. Vorburger, A. Bhardwaj, and K. Asamura (2013), Remote energetic neutral atom imaging of electric potential over a lunar magnetic anomaly, Geophys. Res. Lett., 40, 262-266, doi:10.1002/grl.50135.
  •  
10.
  • Han, X., et al. (författare)
  • Discrepancy between ionopause and photoelectron boundary determined from Mars Express measurements
  • 2014
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 41:23, s. 8221-8227
  • Tidskriftsartikel (refereegranskat)abstract
    • The Martian ionosphere directly interacts with the solar wind due to lack of a significant intrinsic magnetic field, and an interface is formed in between. The interface is usually recognized by two kinds of indicators: the ionopause identified from ionospheric density profiles and the photoelectron boundary (PEB) determined from the electron energy spectrum at higher energies. However, the difference between them remains unclear. We have determined the locations of crossings of the ionopause and PEB from Mars Express observations during 2005-2013 and found that the average position of the PEB appears to be similar to 200km higher than that of the ionopause, which corresponds to 10(3)cm(-3) in the electron density profile. The discrepancy can be explained by cross-field transport of photoelectrons.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy