SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Barbarino G.) srt2:(2020-2022)"

Sökning: WFRF:(Barbarino G.) > (2020-2022)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Panico, B., et al. (författare)
  • Cosmic Rays Investigation by the PAMELA experiment
  • 2020
  • Ingår i: Journal of Physics. - : IOP Publishing.
  • Konferensbidrag (refereegranskat)abstract
    • PAMELA (Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics) is a satellite-borne experiment. It was launched on June 15th 2006 from the Baikonur space centre on board the Russian Resurs-DK1 satellite. For about 10 years PAMELA took data, giving a fundamental contribution to the cosmic ray physics. It made high-precision measurements of the charged component of the cosmic radiation challenging the standard model of the mechanisms of production, acceleration and propagation of cosmic rays in the galaxy and in the heliosphere. PAMELA gave results on different topics on a very wide range of energy. Moreover, the long PAMELA life gives the possibility to study the variation of the proton, electron and positron spectra during the last solar minimum. The time dependence of the cosmic-ray proton and helium nuclei from the solar minimum through the following period of solar maximum activity is currently being studied. Low energy particle spectra were accurately measured also for various solar events that occurred during the PAMELA mission. In this paper a review of main PAMELA results will be reported.
  •  
2.
  • Panico, B., et al. (författare)
  • Time dependence of the proton and helium flux measured by PAMELA
  • 2020
  • Ingår i: Journal of Physics. - : IOP Publishing.
  • Konferensbidrag (refereegranskat)abstract
    • The energy spectra of galactic cosmic rays carry fundamental information regarding their origin and propagation, but, near Earth, cosmic rays are significantly affected by the solar magnetic field which changes over time. The time dependence of proton and electron spectra were measured from July 2006 to December 2009 by PAMELA experiment, that is a ballooon-borne experiment collecting data since 15 June 2006. These studies allowed to obtain a more complete description of the cosmic radiation, providing fundamental information about the transport and modulation of cosmic rays inside the heliosphere. The study of the time dependence of the cosmic-ray protons and helium nuclei from the unusual 23rd solar minimum through the following period of solar maximum activity is presented.
  •  
3.
  • Gutierrez, C. P., et al. (författare)
  • DES16C3cje : A low-luminosity, long-lived supernova
  • 2020
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 496:1, s. 95-110
  • Tidskriftsartikel (refereegranskat)abstract
    • We present DES16C3cje, a low-luminosity, long-lived type II supernova (SN II) at redshift 0.0618, detected by the Dark Energy Survey (DES). DES16C3cje is a unique SN. The spectra are characterized by extremely narrow photospheric lines corresponding to very low expansion velocities of less than or similar to 1500 km s(-1), and the light curve shows an initial peak that fades after 50 d before slowly rebrightening over a further 100 d to reach an absolute brightness of M-r similar to 15.5 mag. The decline rate of the late-time light curve is then slower than that expected from the powering by radioactive decay of Co-56, but is comparable to that expected from accretion power. Comparing the bolometric light curve with hydrodynamical models, we find that DES16C3cje can be explained by either (i) a low explosion energy (0.11 foe) and relatively large Ni-56 production of 0.075 M-circle dot from an similar to 15 M-circle dot red supergiant progenitor typical of other SNe II, or (ii) a relatively compact similar to 40 M-circle dot star, explosion energy of 1 foe, and 0.08 M-circle dot of Ni-56. Both scenarios require additional energy input to explain the late-time light curve, which is consistent with fallback accretion at a rate of similar to 0.5 x 10(-)(8) M-circle dot s(-1).
  •  
4.
  • Gal-Yam, A., et al. (författare)
  • A WC/WO star exploding within an expanding carbon-oxygen-neon nebula
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 601:7892, s. 201-204
  • Tidskriftsartikel (refereegranskat)abstract
    • The final fate of massive stars, and the nature of the compact remnants they leave behind (black holes and neutron stars), are open questions in astrophysics. Many massive stars are stripped of their outer hydrogen envelopes as they evolve. Such Wolf-Rayet stars(1) emit strong and rapidly expanding winds with speeds greater than 1,000 kilometres per second. A fraction of this population is also helium-depleted, with spectra dominated by highly ionized emission lines of carbon and oxygen (types WC/WO). Evidence indicates that the most commonly observed supernova explosions that lack hydrogen and helium (types Ib/Ic) cannot result from massive WC/WO stars(2,3), leading some to suggest that most such stars collapse directly into black holes without a visible supernova explosion(4). Here we report observations of SN 2019hgp, beginning about a day after the explosion. Its short rise time and rapid decline place it among an emerging population of rapidly evolving transients(5-8). Spectroscopy reveals a rich set of emission lines indicating that the explosion occurred within a nebula composed of carbon, oxygen and neon. Narrow absorption features show that this material is expanding at high velocities (greater than 1,500 kilometres per second), requiring a compact progenitor. Our observations are consistent with an explosion of a massive WC/WO star, and suggest that massive Wolf-Rayet stars may be the progenitors of some rapidly evolving transients.
  •  
5.
  • Tartaglia, Leonardo, et al. (författare)
  • The long-lived Type IIn SN 2015da : Infrared echoes and strong interaction within an extended massive shell star star star
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 635
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we report the results of the first similar to four years of spectroscopic and photometric monitoring of the Type IIn supernova SN 2015da (also known as PSN J13522411+3941286, or iPTF16tu). The supernova exploded in the nearby spiral galaxy NGC 5337 in a relatively highly extinguished environment. The transient showed prominent narrow Balmer lines in emission at all times and a slow rise to maximum in all bands. In addition, early observations performed by amateur astronomers give a very well-constrained explosion epoch. The observables are consistent with continuous interaction between the supernova ejecta and a dense and extended H-rich circumstellar medium. The presence of such an extended and dense medium is difficult to reconcile with standard stellar evolution models, since the metallicity at the position of SN 2015da seems to be slightly subsolar. Interaction is likely the mechanism powering the light curve, as confirmed by the analysis of the pseudo bolometric light curve, which gives a total radiated energy greater than or similar to 10(51) erg. Modeling the light curve in the context of a supernova shock breakout through a dense circumstellar medium allowed us to infer the mass of the prexisting gas to be similar or equal to 8 M-circle dot, with an extreme mass-loss rate for the progenitor star similar or equal to 0.6 M-circle dot yr(-1), suggesting that most of the circumstellar gas was produced during multiple eruptive events. Near- and mid-infrared observations reveal a fluxexcess in these domains, similar to those observed in SN 2010jl and other interacting transients, likely due to preexisting radiatively heated dust surrounding the supernova. By modeling the infrared excess, we infer a mass greater than or similar to 0.4 x 10(-3) M-circle dot for the dust.
  •  
6.
  • Sollerman, Jesper, et al. (författare)
  • The Type II supernova SN 2020jfo in M 61, implications for progenitor system, and explosion dynamics
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 655
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the discovery and extensive follow-up observations of SN 2020jfo, a Type IIP supernova (SN) in the nearby (14.5 Mpc) galaxy M 61. Optical light curves (LCs) and spectra from the Zwicky Transient Facility (ZTF), complemented with data from Swift/UVOT and near-infrared photometry is presented. These were used to model the 350-day duration bolometric light curve, which exhibits a relatively short (∼65 days) plateau. This implies a moderate ejecta mass (∼5 M⊙) at the time of explosion, whereas the deduced amount of ejected radioactive nickel is ∼0.025 M⊙. An extensive series of spectroscopy is presented, including spectropolarimetric observations. The nebular spectra are dominated by Hα, but also reveal emission lines from oxygen and calcium. Comparisons to synthetic nebular spectra indicate an initial progenitor mass of ∼12 M⊙. We also note the presence of stable nickel in the nebular spectrum, and SN 2020jfo joins a small group of SNe that have inferred super-solar Ni/Fe ratios. Several years of prediscovery data were examined, but no signs of precursor activity were found. Pre-explosion Hubble Space Telescope imaging reveals a probable progenitor star, detected only in the reddest band (MF814W ≈ −5.8) and it is fainter than expected for stars in the 10−15 M⊙ range. There is thus some tension between the LC analysis, the nebular spectral modeling, and the pre-explosion imaging. To compare and contrast, we present two additional core-collapse SNe monitored by the ZTF, which also have nebular Hα-dominated spectra. This illustrates how the absence or presence of an interaction with circumstellar material (CSM) affect both the LCs and in particular the nebular spectra. Type II SN 2020amv has a LC powered by CSM interaction, in particular after ∼40 days when the LC is bumpy and slowly evolving. The late-time spectra show strong Hα emission with a structure suggesting emission from a thin, dense shell. The evolution of the complex three-horn line profile is reminiscent of that observed for SN 1998S. Finally, SN 2020jfv has a poorly constrained early-time LC, but it is of interest because of the transition from a hydrogen-poor Type IIb to a Type IIn, where the nebular spectrum after the light-curve rebrightening is dominated by Hα, although with an intermediate line width.
  •  
7.
  • Strotjohann, Nora L., et al. (författare)
  • Bright, Months-long Stellar Outbursts Announce the Explosion of Interaction-powered Supernovae
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 907:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Interaction-powered supernovae (SNe) explode within an optically thick circumstellar medium (CSM) that could be ejected during eruptive events. To identify and characterize such pre-explosion outbursts, we produce forced-photometry light curves for 196 interacting SNe, mostly of Type IIn, detected by the Zwicky Transient Facility between early 2018 and 2020 June. Extensive tests demonstrate that we only expect a few false detections among the 70,000 analyzed pre-explosion images after applying quality cuts and bias corrections. We detect precursor eruptions prior to 18 Type IIn SNe and prior to the Type Ibn SN 2019uo. Precursors become brighter and more frequent in the last months before the SN and month-long outbursts brighter than magnitude -13 occur prior to 25% (5-69%, 95% confidence range) of all Type IIn SNe within the final three months before the explosion. With radiative energies of up to 10(49) erg, precursors could eject similar to 1 M of material. Nevertheless, SNe with detected precursors are not significantly more luminous than other SNe IIn, and the characteristic narrow hydrogen lines in their spectra typically originate from earlier, undetected mass-loss events. The long precursor durations require ongoing energy injection, and they could, for example, be powered by interaction or by a continuum-driven wind. Instabilities during the neon- and oxygen-burning phases are predicted to launch precursors in the final years to months before the explosion; however, the brightest precursor is 100 times more energetic than anticipated.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy