SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bark Glenn) srt2:(2005-2009)"

Sökning: WFRF:(Bark Glenn) > (2005-2009)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bark, Glenn, et al. (författare)
  • Fluid chemistry of the hypozonal Fäboliden orogenic gold deposit, northern Sweden
  • 2006
  • Ingår i: The 27th Nordic Geological Winter Meeting, January 9-12, 2006, Oulu, Finland. ; , s. 13-
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Southwest of the well-known Skellefte District in northern Sweden a new ore province is presently being explored, the so called Gold Line. Today the largest known gold deposit in the Gold Line is the Fäboliden orogenic gold deposit.The gold mineralization is commonly hosted in quartz veins, which parallel the steep main foliation, within a shear zone in the metagreywacke host rocks. The fine-grained (2-40 μm) gold is closely associated with arsenopyrite in the quartz veins.Two main groups of fluid inclusions are present in the Fäboliden quartz veins. 1) Primary inclusions with a CO2-CH4 or a H2S (±CH4) composition (the latter recognized for the first time in a Swedish ore deposit). 2) Secondary fluid inclusions composed of pure CH4 and low-salinity aqueous fluids. The primary fluid inclusions are associated with arsenopyrite (+gold) and the CO2-CH4 fluid was also involved in precipitation of graphite. The graphite-forming reactions should generate a H2O phase as well. However, the presence of a H2O phase was not detected in any of the primary fluid inclusions and is suggested to have been consumed by wall rock reactions, generating hydrated alteration minerals such as Ca-amphibole, biotite, and minor tourmaline. Fluid inclusion data indicate arsenopyrite and graphite deposition at a pressure condition of ~4 kbars. Graphite is useful as an indicator of the metamorphic grade because the graphitization process is irreversible with no effects on the graphite structure during retrogression (Beyssac et al., 2002). Graphite in the mineralized quartz veins at Fäboliden indicates maximum temperatures of 520-560°C for the hydrothermal alteration system.Pyrrhotite was deposited after a subsequent pressure decrease and a later input of pure CH4 and low-salinity aqueous fluids, as suggested by the secondary fluid inclusions. These later fluids were trapped at a substantially lower pressure of ~0.3 kbars and a temperature of ~400°C.
  •  
2.
  • Bark, Glenn, et al. (författare)
  • Fluid chemistry of the Palaeoproterozoic Fäboliden hypozonal orogenic gold deposit, northern Sweden : evidence from fluid inclusions
  • 2007
  • Ingår i: GFF. - : Informa UK Limited. - 1103-5897 .- 2000-0863. ; 129:3, s. 197-210
  • Tidskriftsartikel (refereegranskat)abstract
    • A new ore province, the Gold Line, southwest of the Skellefte District, northern Sweden, is currently under exploration. The largest known deposit in the Gold Line is the hypozonal Fäboliden orogenic gold deposit. The mineralization is hosted by arsenopyrite-bearing quartz veins, within a steep shear zone in amphibolite facies metagreywacke host rocks. Gold occur in fractures and as intergrowths in arsenopyrite-löllingite, and as free grains in the silicate matrix of the host rock. The hydrothermal mineral assemblage in the proximal alteration zone is diopside, calcic amphibole, biotite, and minor andalusite and tourmaline. Primary fluid inclusions in the Fäboliden quartz veins show a CO2-CH4 or a H2S (±CH4) composition (the latter recognized for the first time in a Swedish ore deposit). The primary fluid inclusions are associated with arsenopyrite-löllingite (+gold) and the CO2-CH4 fluid was also involved in precipitation of graphite. A prevalence of carbonic over aqueous fluid inclusions is characteristic for a number of hypozonal high-temperature orogenic gold deposits. The Fäboliden deposit, thus, shows fluid compositions similar to other hypozonal orogenic gold deposits. The proposed main mechanism for precipitation of gold from the fluids, is a mixing between H2S-rich and H2O?-CO2±CH4 fluids. Fluid inclusion data indicate arsenopyrite-löllingite and graphite deposition at a pressure condition of about 4 kbar. Graphite thermometry indicates maximum temperatures of 520-560°C for the hydrothermal alteration at Fäboliden, suggesting that at least the late stages of the mineralizing event took place shortly after peak-metamorphism in the area, i.e. at c. 1.80 Ga.
  •  
3.
  •  
4.
  • Bark, Glenn (författare)
  • Genesis and tectonic setting of the hypozonal Fäboliden orogenic gold deposit, northern Sweden
  • 2005
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The well-known Skellefte Ore District, northern Sweden, hosts a large number of massive sulphide deposits, a few porphyry-type-deposits and a number of gold deposits in different geological settings. Southwest of this district a new ore province, the so called Gold Line, is presently being uncovered. During the past decade a number of gold occurrences have been discovered in this area. Only one deposit is in production, the Svartliden gold deposit (2 Mton at 4.3 ppm Au). However, with regards to tonnage the Fäboliden gold deposit stands out with a known mineral resource of c. 16 Mton with 1.33 ppm Au. Additional 24.5 Mton with 1.5 ppm Au is indicated down to a depth of 350 m. The late- to post-orogenic, c. 1.81-1.77 Ga, Revsund granite constitutes the main rock type in the Fäboliden area and surrounds a narrow belt of metavolcanic rocks and metagreywackes. The metasedimentary rocks are strongly deformed, within a roughly N-S trending subvertical shear zone, with boudinaged competent horizons that indicate E-W shortening and a suggested dextral sense of shear within the shear zone. The mineralization at Fäboliden constitutes a 30-50 m wide, N-S striking, steeply dipping ore zone. The mineralization is commonly hosted in arsenopyrite-bearing quartz-veins, which parallel the main foliation, within the metagreywackes in the shear zone. The fine-grained (2-40 µm) gold is closely associated with arsenopyrite-löllingite and stibnite and found in fissures and as intergrowths in the arsenopyrite-löllingite. Gold is also seen as free grains in the silicate matrix of the metagreywacke host rock. Microprobe analysis shows that the gold occurs as electrum (Au:Ag 2:1). The proximal ore zone display enrichment in Ca, total S, As, Ag, Au, Sb, Sn, W, Pb, Bi, Cd, Se, and Hg, whereas K and Na are slightly depleted. The hydrothermal alteration assemblage in the proximal ore zone is diopside, calcic amphibole, biotite, and minor andalusite and tourmaline. This type of assemblage is commonly recognized in hypozonal orogenic gold deposits worldwide. The c. 1.3 km long ore body (lode) is steeply dipping and known to a depth of 150 m, with a few deeper boreholes indicating a continuation of the mineralization towards depth. The mineralization is also open towards north and south. The fabric that hosts the mineralization is also found in the outer margin of the surrounding Revsund granite. It is therefore suggested that at least the final stages of the gold mineralization are late- or post-orogenic in age, and the maximum age for the mineralization is constrained at c. 1.80 Ga (Revsund age). The mineralizing fluids were composed of CO2-CH4-H2S. Gold, arsenopyrite- löllingite, and graphite were precipitated from this fluid. The crystal structure of the graphite, enclosed in the gold related quartz veins, indicates a maximum temperature of 520-560ºC for the mineralizing event, temperature conditions equal to mid-amphibolite facies. These temperatures indicate pressure conditions of c. 4 kbar for the mineralizing event. During deformation mineralizing fluids are often concentrated into deformation zones. Therefore, the potential for economic mineralization in the Lycksele-Storuman region is regarded as very high since the initial results from this project have indicated the existence of several larger ductile to semi-ductile shear zones and accompanied silica alteration in the studied area. During 2004 the project strongly assisted in locating a new gold target in the Gold Line area. For more effective future exploration in this area a better understanding of the structural conditions and evolution is a key factor.
  •  
5.
  • Bark, Glenn (författare)
  • On the origin of the Fäboliden orogenic gold deposit, northern Sweden
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • A new promising ore province, the Gold Line, southwest of the well- known Skellefte District, northern Sweden, is currently under exploration. This province hosts, so far, one operating mine, the Svartliden Au mine, and the recently closed Blaiken Zn-Pb-Au-Ag mine. The largest known gold deposit, the hypozonal Fäboliden orogenic gold deposit, in the area was recently granted mining permits. The deposit holds c. 54 Mt at 1.2 g/t Au, with a planned production of 4.6 Mt of ore/year. The mineralization at Fäboliden is commonly hosted in arsenopyrite-bearing quartz-veins, within a roughly N-S striking, steeply dipping shear zone in amphibolite facies volcano- sedimentary host rocks. The narrow belt of supracrustal rocks is surrounded by late- to post-orogenic Revsund granite. The gold is fine-grained (2-40 µm) and closely associated with arsenopyrite- löllingite and stibnite. Gold is found in fractures and as inclusions in the arsenopyrite-löllingite. Gold is also seen as free grains in the silicate matrix of the host rock. The hydrothermal mineral assemblage in the proximal alteration zone is diopside, calcic amphibole, biotite, and minor andalusite and tourmaline. This type of assemblage is commonly recognized in hypozonal orogenic gold deposits worldwide. The lateral extent of the proximal alteration zone is estimated to 30-50 meters, and there is a good agreement between diopside- amphibole-biotite alteration, quartz veining, and gold mineralization. The mineral assemblage in the distal alteration zone is characterised by the presence of Ca- and Fe-Mg amphiboles, hedenbergite, biotite, and quartz. The transition from the distal alteration into the regional metamorphic assemblage is diffuse, and the only discernable feature appears to be a gradual decrease of amphibole away from the mineralization. The ductile gold-hosting fabric progresses laterally across the Revsund granite contact and then disappears after a few meters inside the granite, suggesting that at least the final stages of mineralization syn- to postdate the emplacement of the c. 1.81-1.77 Ga Revsund granite. Relationships between garnet-biotite and graphite geothermometry, together with these field relationships, indicate that the late stages of mineralization at Fäboliden post-date regional peak-metamorphism in the area, which is estimated at c. 1.80 Ga. The Fäboliden gold mineralization is hosted by a reverse, mainly dip-slip, high-angle shear zone with a relatively small horizontal shear movement. The mineralization constitutes two sets of mineralized quartz veins, one steep fault-fill vein system that is parallel to the regional foliation and one flat-lying extensional vein system. Both vein sets are suggested to have been generated from the same stress field, during E-W shortening at c. 1.80 Ga. At least two types of ore shoot are present at Fäboliden, intersections between the fault-fill vein set and the extensional vein set and bends in the shear zone system both show elevated gold content, similar to many gold- quartz vein deposits globally. The fluids involved in the precipitation of gold at Fäboliden shows characteristics similar to other hypozonal orogenic gold deposits, such as a CO2-CH4-H2S fluid composition and pressure-temperature conditions of c. 4 kbar and 520-560°C. Sulphur isotope data ranges between -1.5 and +3.6‰. Oxygen and hydrogen isotope data ranges between +10.6 and 13.1‰, and -120 to -67‰, respectively. The hydrothermal fluids at Fäboliden are interpreted to have originate from a crustally contaminated magmatic source. The potential for future orogenic gold discovery in the Fennoscandian Shield is considered good. From this PhD study it is suggested that interesting targets, concerning exploration for orogenic gold in at least the Gold Line, would be areas associated with roughly N-S striking tectonic zones that were active at around 1.80 Ga.
  •  
6.
  • Bark, Glenn, et al. (författare)
  • Orogenic gold in the new Lycksele-Storuman ore province, northern Sweden : the Palaeoproterozoic Fäboliden deposit
  • 2007
  • Ingår i: Ore Geology Reviews. - : Elsevier BV. - 0169-1368 .- 1872-7360. ; 32:1-2, s. 431-451
  • Tidskriftsartikel (refereegranskat)abstract
    • Southwest of the well-known Skellefte District, northern Sweden, a new gold ore province, the so called Gold Line, is presently being explored. During the past decade a number of gold occurrences have been discovered in this area. The largest known gold occurrence is the Fäboliden deposit. Late-to post-orogenic, ca. 1.81 to 1.77 Ga, Revsund granite constitutes the main rock type in the Fäboliden area and surrounds a narrow belt of mineralized metagreywackes and metavolcanic rocks. The supracrustal rocks are strongly deformed within a roughly N-S trending subvertical shear zone. The mineralization constitutes a 30 to 50 m wide, N-S striking, steeply dipping zone. The mineralization is commonly hosted by arsenopyrite-bearing quartz-veins within the supracrustal rocks. The quartz veins parallel the main foliation in the shear zone. Gold is closely associated with arsenopyrite-löllingite and stibnite and found in fractures and as intergrowths in the arsenopyrite-löllingite. Gold is also seen as free grains in the silicate matrix of the host rock. The proximal alteration zone displays positive correlation with Ca, S, As, Ag, Sb, Sn, W, Pb, Bi, Cd, Se, and Hg, whereas K and Na show a slightly negative correlation. The hydrothermal mineral assemblage in the proximal alteration zone is diopside, calcic amphibole, biotite, and minor andalusite and tourmaline. This type of assemblage is commonly recognized in hypozonal orogenic gold deposits worldwide. Garnet-biotite geothermometry indicates amphibolite facies in the Fäboliden area. The ductile fabric that hosts the mineralization is also found in the margin of the surrounding Revsund granitoid. It is therefore suggested that at least the final stages of the gold mineralization are syn- to late-kinematic, and the minimum age for the mineralization is thus constrained at ca. 1.80 Ga (Revsund age).
  •  
7.
  • Kathol, Benno, et al. (författare)
  • Description of regional geological and geophysical maps of the Skellefte District and surrounding areas
  • 2005
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Beskrivningen ingår i serien Ba - översiktliga jordarts- och berggrundskartor. Syftet med denna beskrivning är att, utifrån SGUs berggrundskartering och geofysiska kartering i området, ge en så heltäckande bild av Skelleftefältets berggrund som möjligt. Tillsammans med norra Norrbotten och Bergslagen utgör Skelleftefältet ett av Sveriges viktigaste malmområden. Beskrivningen bygger på en genomgång och bearbetning av redan insamlad information samt kompletterande fältundersökningar.Beskrivningen innehåller dessutom en presentation av områdets geologiska utveckling, detaljerade geologiska beskrivningar för särskilt viktiga områden, förteckningar över de olika malmfyndigheterna, radiometriska data m.m.Till beskrivningen hör sex separata kartor: berggrundskarta (Ba 57:1), karta över metamorfosgrad, strukturer och isotopåldrar (Ba 57:2), karta över mineral- och bergartsresurser samt hydrotermalomvandlingar (Ba 57:3), magnetisk anomalikarta (Ba 57:4), Bougueranomalikarta (Ba 57:5), samt gammastrålningskarta, elektromagnetisk karta (VLF), Eulerträffar från tyngdkraftsdata och höjdreliefkarta (Ba 57:6).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy