SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Barlow Nicholas) srt2:(2020-2024)"

Search: WFRF:(Barlow Nicholas) > (2020-2024)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Barlow, Nicholas, et al. (author)
  • Macrocyclic Peptidomimetics as Inhibitors of Insulin-Regulated Aminopeptidase (IRAP)
  • 2020
  • In: RSC Medicinal chemistry. - : Royal Society of Chemistry (RSC). - 2632-8682. ; 11:2, s. 234-244
  • Journal article (peer-reviewed)abstract
    • Macrocyclic analogues of the linear hexapeptide, angiotensin IV (AngIV) have proved to be potent inhibitors of insulin-regulated aminopeptidase (IRAP, oxytocinase, EC 3.4.11.3). Along with higher affinity, macrocycles may also offer better metabolic stability, membrane permeability and selectivity, however predicting the outcome of particular cycle modifications is challenging. Here we describe the development of a series of macrocyclic IRAP inhibitors with either disulphide, olefin metathesis or lactam bridges and variations of ring size and other functionality. The binding mode of these compounds is proposed based on molecular dynamics analysis. Estimation of binding affinities (∆G) and relative binding free energies (∆∆G) with the linear interaction energy (LIE) method and free energy perturbation (FEP) method showed good general agreement with the observed inhibitory potency. Experimental and calculated data highlight the cumulative importance of an intact N-terminal peptide, the specific nature of the macrocycle, the phenolic oxygen and the C-terminal functionality.
  •  
2.
  • Cooper, Declan L.M., et al. (author)
  • Consistent patterns of common species across tropical tree communities
  • 2024
  • In: Nature. - 0028-0836 .- 1476-4687. ; 625:7996, s. 728-734
  • Journal article (peer-reviewed)abstract
    • Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations 1–6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories 7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.
  •  
3.
  • Kattge, Jens, et al. (author)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • In: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Journal article (peer-reviewed)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
4.
  • Muscarella, Robert, et al. (author)
  • The global abundance of tree palms
  • 2020
  • In: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 29:9, s. 1495-1514
  • Journal article (peer-reviewed)abstract
    • AimPalms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change.LocationTropical and subtropical moist forests.Time periodCurrent.Major taxa studiedPalms (Arecaceae).MethodsWe assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≥10 cm diameter at breast height) abundance relative to co‐occurring non‐palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure.ResultsOn average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long‐term climate stability. Life‐form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non‐tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above‐ground biomass, but the magnitude and direction of the effect require additional work.ConclusionsTree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests.
  •  
5.
  • Pettorelli, Nathalie, et al. (author)
  • Time to integrate global climate change and biodiversity science-policy agendas
  • 2021
  • In: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 58:11, s. 2384-2393
  • Journal article (peer-reviewed)abstract
    • There is an increasing recognition that, although the climate change and biodiversity crises are fundamentally connected, they have been primarily addressed independently and a more integrated global approach is essential to tackle these two global challenges. Nature-based Solutions (NbS) are hailed as a pathway for promoting synergies between the climate change and biodiversity agendas. There are, however, uncertainties and difficulties associated with the implementation of NbS, while the evidence regarding their benefits for biodiversity remains limited. We identify five key research areas where incomplete or poor information hinders the development of integrated biodiversity and climate solutions. These relate to refining our understanding of how climate change mitigation and adaptation approaches benefit biodiversity conservation; enhancing our ability to track and predict ecosystems on the move and/or facing collapse; improving our capacity to predict the impacts of climate change on the effectiveness of NbS; developing solutions that match the temporal, spatial and functional scale of the challenges; and developing a comprehensive and practical framework for assessing, and mitigating against, the risks posed by the implementation of NbS. Policy implications. The Conference of the Parties (COP) for the United Nations Framework Convention on Climate Change (COP26) and the Convention on Biological Diversity (COP15) present a clear policy window for developing coherent policy frameworks that align targets across the nexus of biodiversity and climate change. This window should (a) address the substantial and chronic underfunding of global biodiversity conservation, (b) remove financial incentives that negatively impact biodiversity and/or climate change, (c) develop higher levels of integration between the biodiversity and climate change agendas, (d) agree on a monitoring framework that enables the standardised quantification and comparison of biodiversity gains associated with NbS across ecosystems and over time and (e) rethink environmental legislation to better support biodiversity conservation in times of rapid climatic change.
  •  
6.
  • Wesson, R., et al. (author)
  • JWST observations of the Ring Nebula (NGC 6720): I. Imaging of the rings, globules, and arcs
  • 2024
  • In: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 528:2, s. 3392-3416
  • Journal article (peer-reviewed)abstract
    • We present JWST images of the well-known planetary nebula NGC 6720 (the Ring Nebula), covering wavelengths from 1.6 to 25 m. The bright shell is strongly fragmented with some 20 000 dense globules, bright in H2, with a characteristic diameter of 0.2 arcsec and density nH ∼105-106 cm-3. The shell contains a narrow ring of polycyclic aromatic hydrocarbon (PAH) emission. H2 is found throughout the shell and also in the halo. H2 in the halo may be located on the swept-up walls of a biconal polar flow. The central cavity is filled with high-ionization gas and shows two linear structures which we suggest are the edges of a biconal flow, seen in projection against the cavity. The central star is located 2 arcsec from the emission centroid of the cavity and shell. Linear features ('spikes') extend outward from the ring, pointing away from the central star. Hydrodynamical simulations reproduce the clumping and possibly the spikes. Around 10 low-contrast, regularly spaced concentric arc-like features are present; they suggest orbital modulation by a low-mass companion with a period of about 280 yr. A previously known much wider companion is located at a projected separation of about 15 000 au; we show that it is an M2-M4 dwarf. NGC 6720 is therefore a triple star system. These features, including the multiplicity, are similar to those seen in the Southern Ring Nebula (NGC 3132) and may be a common aspect of such nebulae.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6
Type of publication
journal article (6)
Type of content
peer-reviewed (6)
Author/Editor
Lewis, Simon L. (3)
Affum-Baffoe, Kofi (2)
Baker, Timothy R. (2)
Phillips, Oliver L. (2)
Diaz, Sandra (1)
Ostonen, Ivika (1)
show more...
Tedersoo, Leho (1)
Ashton, Peter (1)
Bond-Lamberty, Ben (1)
Manchado, Arturo (1)
Larhed, Mats (1)
Moretti, Marco (1)
Wang, Feng (1)
Verheyen, Kris (1)
Graae, Bente Jessen (1)
Barlow, M. J. (1)
Isaac, Marney (1)
Malhi, Yadvinder (1)
Fauset, Sophie (1)
Adu-Bredu, Stephen (1)
Hubau, Wannes (1)
Zieminska, Kasia (1)
Gutierrez-de-Teran, ... (1)
Prentice, Honor C (1)
Jackson, Robert B. (1)
Reichstein, Markus (1)
Sutherland, William ... (1)
Hickler, Thomas (1)
Rogers, Alistair (1)
Sandström, Anja, 197 ... (1)
Chen, Shengbin (1)
Manzoni, Stefano (1)
Pakeman, Robin J. (1)
Poschlod, Peter (1)
Dainese, Matteo (1)
Justtanont, Kay, 196 ... (1)
Ruiz-Peinado, Ricard ... (1)
van Bodegom, Peter M ... (1)
Aleman, I. (1)
McDonald, I. (1)
Sahai, R. (1)
van Hoof, P. A. M. (1)
Zijlstra, A. (1)
Wellstein, Camilla (1)
Gross, Nicolas (1)
Violle, Cyrille (1)
Björkman, Anne, 1981 (1)
Rillig, Matthias C. (1)
Hemp, Andreas (1)
Fischer, Markus (1)
show less...
University
University of Gothenburg (2)
Uppsala University (2)
Stockholm University (1)
Lund University (1)
Chalmers University of Technology (1)
Karlstad University (1)
show more...
Swedish University of Agricultural Sciences (1)
show less...
Language
English (6)
Research subject (UKÄ/SCB)
Natural sciences (5)
Medical and Health Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view