SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Barrie Leonard A.) srt2:(2019)"

Sökning: WFRF:(Barrie Leonard A.) > (2019)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Winiger, Patrik, et al. (författare)
  • Source apportionment of circum-Arctic atmospheric black carbon from isotopes and modeling
  • 2019
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 5:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Black carbon (BC) contributes to Arctic climate warming, yet source attributions are inaccurate due to lacking observational constraints and uncertainties in emission inventories. Year-round, isotope-constrained observations reveal strong seasonal variations in BC sources with a consistent and synchronous pattern at all Arctic sites. These sources were dominated by emissions from fossil fuel combustion in the winter and by biomass burning in the summer. The annual mean source of BC to the circum-Arctic was 39 +/- 10% from biomass burning. Comparison of transport-model predictions with the observations showed good agreement for BC concentrations, with larger discrepancies for (fossil/biomass burning) sources. The accuracy of simulated BC concentration, but not of origin, points to misallocations of emissions in the emission inventories. The consistency in seasonal source contributions of BC throughout the Arctic provides strong justification for targeted emission reductions to limit the impact of BC on climate warming in the Arctic and beyond.
  •  
2.
  • Sharma, S., et al. (författare)
  • A Factor and Trends Analysis of Multidecadal Lower Tropospheric Observations of Arctic Aerosol Composition, Black Carbon, Ozone, and Mercury at Alert, Canada
  • 2019
  • Ingår i: Journal of Geophysical Research - Atmospheres. - 2169-897X .- 2169-8996. ; 124:24, s. 14133-14161
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations from 1980 to 2013 of 20 aerosol constituents, ozone and mercury at Alert, Canada (82.50 degrees N, 62.35 degrees W), were analyzed for trends and dominant factors of the Arctic haze during winter and spring. Trends reflect changing emissions in Eurasia, the main source region for surface pollution in the high Arctic. SO42-, H+, NH4,+ K+, Cu, Ni, Pb, Zn, nonsoil V, nonsoil Mn, and equivalent black carbon decreased between 23% and 80% as emissions declined rapidly in northern Eurasia during the early 1990s. NO3- increased by 20% as aerosol acidity declined. Metals were linked to emissions from smelting and fossil fuel combustion. In winter, ozone increased by 5% over 23 years, consistent with other observations and global modeling. Twelve PMF factors emerged for the dark period (November to February) and 13 for the light period (March to May). Eleven PMF factors are common to both dark and light, a twelfth factor was associated with sulfate in the dark and nitrate in the light, and the thirteenth (light period) was related to ozone and gaseous mercury depletion near Alert. IODINE and NITRATE factors, important for Arctic chemistry, changed with sunlight. In the light, 50% of all NO3- was on the NITRATE factor, while in the dark, most was associated with MODIFIED SEA SALT and equivalent black carbon. In the dark (light), 90% (28%) of iodine were found on the factor IODINE and 58% associated with SEA-SALT and MODIFIED SEA-SALT. These results help in understanding the role of atmospheric chemistry in weather and climate processes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy