SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Barsoum Imad) srt2:(2020-2024)"

Sökning: WFRF:(Barsoum Imad) > (2020-2024)

  • Resultat 1-10 av 33
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lundkvist, Axel, et al. (författare)
  • Geometric and Material Modelling Aspects for Strength Prediction of Riveted Joints
  • 2023
  • Ingår i: Metals. - : MDPI AG. - 2075-4701. ; 13:3, s. 500-
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study is to develop a methodology for static strength and failure mode simulation of hot-driven riveted joints. The purpose is to be able to accurately estimate a rivet joint's static strength behaviour and its failure mode without relying on experiments, to save both time and resources during the design of joints. The non-linear finite element analysis modelling framework considered the rivet joint configurations and geometry, the material properties of the plate and rivet as well as the clamping force of the hot-driven rivet. A ductile damage model was also implemented to capture the stress softening of the materials and the failure modes of the joints. Using experimental data from literature, the modelling framework is validated, and it is shown that it is able to capture the strength behaviour and failure modes of different configurations of rivet joints markedly well. The effect of the rivet pre-load on the mechanical response of the joint is also studied and it is shown that the strength of the joint increased with the increase in rivet pre-load. The modelling framework is then applied to an industrial component. The modelling framework is used to compare welding and riveting as joining methods in a component built in two grades of high-strength steel. It is found that the welded joint possessed greater strength compared to the proposed riveted joint. However, using the proposed simulation methodology developed, a riveted joint with matching strength to the welded joint could be designed.
  •  
2.
  • Zhu, Jinchao, et al. (författare)
  • Computational weld-mechanics assessment of welding distortions in a large beam structure
  • 2021
  • Ingår i: Engineering structures. - : Elsevier BV. - 0141-0296 .- 1873-7323. ; 236
  • Tidskriftsartikel (refereegranskat)abstract
    • Unwanted distortions are typically observed in components after the welding process. Physical trial tests and extra post-treatments are being widely utilized in industries to minimize and correct the out of tolerance distortions. These methods are time-consuming and costly. There has been growing interest in digital tools which have great potential to minimize the physical test loops and corrections. In this study welding distortions analysis has been carried out on a large beam structure experimentally and numerically using computational welding mechanics (CWM) techniques such as the inherent strain (local?global) method and the shrinkage method, together with the lumping approach. The estimated distortions from the shrinkage together with lumping approaches were in good agreement with the experimental measurements and the computational time affordable. The inherent strain (local?global) method captured the trend of distortion with an underestimation of distortions. The accuracy of the estimated residuals stresses from the inherent strain (local?global) approach is higher than the one from shrinkage together with lumping approaches. Moreover, the effects of various welding process parameters (i.e. welding sequence, fixture, and weld pool size) on welding distortions were investigated. It is found that following the proper welding sequence could minimize the welding distortion of the beam structure. Increasing the constraints of fixtures can prevent welding distortion effectively and reducing weld pool size results in less welding distortions of the beam structure.
  •  
3.
  • Zhu, Jinchao, et al. (författare)
  • Evaluation of local stress-based fatigue strength assessment methods for cover plates and T-joints subjected to axial and bending loading
  • 2022
  • Ingår i: Fatigue & Fracture of Engineering Materials & Structures. - : Wiley. - 8756-758X .- 1460-2695. ; 45:9, s. 2531-2548
  • Tidskriftsartikel (refereegranskat)abstract
    • This study aims to find suitable fatigue assessment methods for welded structures (cover plates and T-joints) subjected to axial and bending loading. The Hot Spot Stress (HSS), 1-mm stress (OM), Theory of Critical Distances (TCD), Stress Averaging (SA), and Effective Notch Stress (ENS) methods are evaluated in terms of accuracy and reliability. The evaluation is based on fatigue test data extracted from the literature and carried out in this study. It is found that the SA method can be used to assess the fatigue strength of cover plate joints under axial loading with relatively good accuracy and low scatter, followed by the ENS method. The HSS, TCD, SA, and ENS methods are conservative estimation methods for T-joints under bending, while the accuracy is low. Furthermore, fatigue design curves applicable for T-joints under bending are discussed, which can be used in the TCD method and SA method.
  •  
4.
  • Abdulla, Hind, et al. (författare)
  • Mathematical Modeling of Multi-Performance Metrics and Process Parameter Optimization in Laser Powder Bed Fusion
  • 2022
  • Ingår i: Metals. - : MDPI AG. - 2075-4701. ; 12:12
  • Tidskriftsartikel (refereegranskat)abstract
    • This study aims to develop mathematical models to improve multi-performance metrics, such as relative density and operating costs, in laser powder bed fusion (LPBF), also known as selective laser melting, a metallic additive manufacturing technique, by optimizing the printing process parameters. The work develops a data-driven model for relative density based on measurements and an analytical model for operating costs related to the process parameters. Optimization models are formulated to maximize relative density or minimize operating costs by determining the optimal set of process parameters, while meeting a target level of the other performance metrics (i.e., relative density or operating costs). Furthermore, new metrics are devised to test the sensitivity of the optimization solutions, which are used in a novel robust optimization model to acquire less sensitive process parameters. The sensitivity analysis examines the effect of varying some parameters on the relative density of the fabricated specimens. Samples with a relative density greater than 99% and a machine operating cost of USD 1.00 per sample can be produced, utilizing a combination of low laser power (100 W), high scan speed (444 mm/s), moderate layer thickness (0.11 mm), and large hatch distance (0.4 mm). This is the first work to investigate the relationship between the quality of the fabricated samples and operating cost in the LPBF process. The formulated robust optimization model achieved less sensitive parameter values that may be more suitable for real operations. The equations used in the models are verified via 10-fold cross-validation, and the predicted results are further verified by comparing them with the experimental data in the literature. The multi-performance optimization models and framework presented in this study can pave the way for other additive manufacturing techniques and material grades for successful industrial-level implementation.
  •  
5.
  • Ahmad, Zubair, et al. (författare)
  • Fine-tuning of redox-ability, optical, and electrical properties of Bi2MoO6 ceramics via lanthanide doping and rGO integration for photo-degradation of Methylene Blue and Ciprofloxacin
  • 2024
  • Ingår i: Journal of Alloys and Compounds. - : Elsevier BV. - 0925-8388 .- 1873-4669. ; 1002
  • Tidskriftsartikel (refereegranskat)abstract
    • Herein, lanthanide ion (Gd+3) doped Bismuth Molybdate (Bi2MoO6) integrated on the rGO sheets has been prepared as a novel photocatalyst (Gd@Bi2MoO6/rGO) for the photocatalytic treatment of toxic pollutants. Different physiochemical, optical, electrical, thermal, and electrochemical properties of Gd@Bi2MoO6/rGO, along with its counterparts (Bi2MoO6 and Gd@Bi2MoO6) were studied through XRD, SEM/TEM, FT-IR, UV/Vis, I-V, TGA, Mott-Schottky, and EIS measurements. Photocatalytic experiments revealed that Gd@Bi2MoO6/rGO exhibited significantly enhanced photocatalytic activity, achieving 96.2 % photo-degradation of Methylene Blue with 120 min of irradiation, which is 6.5 and 3.1 times higher compared to Bi2MoO6 (40.9 %) and Gd@Bi2MoO6 (64.8 %), respectively. Moreover, Gd@Bi2MoO6/rGO demonstrated a notable photocatalytic efficiency of 81.7 % towards Ciprofloxacin, significant as per the existing literature benchmark. The enhanced photocatalytic activity is ascribed to the in-built Gd+3 redox centers, high electrical conductivity (7.35 × 10−3 S/m), favorable flat band potential (-0.81 V), and low semiconductor impedance (Rct = 51.71 Ω and Rs = 0.90 Ω). Additionally, the electron-capturing ability of lanthanide dopant ions and S-C heterojunction of Gd@Bi2MoO6/rGO facilitates the separation of photo-generated e-/h+ pairs and favors high concentrations of ROS. The results obtained highlight the potential of Gd@Bi2MoO6/rGO for applications in photocatalysis and wastewater treatment.
  •  
6.
  • Ahmed, N., et al. (författare)
  • Process parameter selection and optimization of laser powder bed fusion for 316L stainless steel : A review
  • 2022
  • Ingår i: JOURNAL OF MANUFACTURING PROCESSES. - : Elsevier BV. - 1526-6125. ; 75, s. 415-434
  • Forskningsöversikt (refereegranskat)abstract
    • Stainless steel 316L has been an extensively investigated metallic material for laser powder bed fusion (L-PBF) in the past few decades due to its high corrosion resistance. However, there are challenges related to producing LPBF parts with minimal defects, attaining mechanical properties comparable with traditional process and dependency on time consuming post process treatments. The selection of L-PBF process parameters is crucial to overcome these challenges. This paper reviews the research carried out on L-PBF process parameter optimization for fabrication of 316L steel components for maximizing part densifications and attaining desired microstructure morphologies in parts. A brief work on numerical simulation approach for process parameter optimization for high densifications is also included in this paper.
  •  
7.
  • Alawwa, Fares, et al. (författare)
  • Modeling, testing, and optimization of novel lattice structures for enhanced mechanical performance
  • 2023
  • Ingår i: Mechanics of Advanced Materials and Structures. - : Informa UK Limited. - 1537-6494 .- 1537-6532. ; , s. 1-24
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellular materials have drawn increasing interest in numerous applications due to their promising specific stiffness, strength and energy absorption capacity. In this work, a variety of rather novel lattice topologies pertinent to additive manufacturing are derived and examined. A number of these are derived by free-domain and constrained domain topology optimization procedures, while others are inspired by the triply periodic minimum surface (TPMS) sheet-based topologies. The topology optimization module utilized a single objective function of minimizing strain energy under linear elastic conditions. A total of fifteen different lattice topologies are investigated numerically, including both novel and conventional topologies (e.g. strut-based lattices) and their effective elastic properties are determined with respect to relative density through finite element analysis (FEA). Based on the preliminary FEA results, a number of these topologies are selected of which tessellated lattice structures are fabricated through laser powder bed fusion (LPBF) additive manufacturing technique out of Nylon thermoplastic material. The tessellated lattice structures are experimentally tested in compression and their mechanical performance, including uniaxial modulus, yield strength, and energy absorption capacity (EAC), is assessed. FEA simulations have been conducted using an elastic-plastic constitutive model for the Nylon base material. Both the experimental and numerical results reveal that the mechanical performance of the novel tube-based TPMS lattice P-100 and the combined loading (CL) topology derived through free-domain topology optimization surpasses all other topologies. P-100 uses a primitive TPMS with equal-length tubular connections in each direction, where the tubular length percentage compared to the primitive lattice size is 100%, while CL lattice topology is a free domain topology optimized under compressive loads on the centers of faces, edges, and vertices toward the center. The innovative lattice topologies proposed in the current study, particularly the P-100 and CL topologies, can become crucial in applications where it is necessary to improve the energy absorption capacity, such as sandwich panel cores, supports, and infills for 3D printed components.
  •  
8.
  • Almesmari, Abdulla, et al. (författare)
  • Review of Additively Manufactured Polymeric Metamaterials : Design, Fabrication, Testing and Modeling
  • 2023
  • Ingår i: Polymers. - : MDPI AG. - 2073-4360. ; 15:19
  • Forskningsöversikt (refereegranskat)abstract
    • Metamaterials are architected cellular materials, also known as lattice materials, that are inspired by nature or human engineering intuition, and provide multifunctional attributes that cannot be achieved by conventional polymeric materials and composites. There has been an increasing interest in the design, fabrication, and testing of polymeric metamaterials due to the recent advances in digital design methods, additive manufacturing techniques, and machine learning algorithms. To this end, the present review assembles a collection of recent research on the design, fabrication and testing of polymeric metamaterials, and it can act as a reference for future engineering applications as it categorizes the mechanical properties of existing polymeric metamaterials from literature. The research within this study reveals there is a need to develop more expedient and straightforward methods for designing metamaterials, similar to the implicitly created TPMS lattices. Additionally, more research on polymeric metamaterials under more complex loading scenarios is required to better understand their behavior. Using the right machine learning algorithms in the additive manufacturing process of metamaterials can alleviate many of the current difficulties, enabling more precise and effective production with product quality.
  •  
9.
  • Almesmari, Abdulla, et al. (författare)
  • Topology optimised novel lattice structures for enhanced energy absorption and impact resistance
  • 2024
  • Ingår i: Virtual and Physical Prototyping. - : Informa UK Limited. - 1745-2759 .- 1745-2767. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • This study evaluates topologically optimized lattice structures for high strain rate loading, crucial for impact resistance. Using the BESO (Bidirectional Evolution Structural Optimisation) topology optimisation algorithm, CompIED and ShRIED topologies are developed for enhanced energy absorption and impact resistance. Micromechanical simulations reveal CompIED surpasses theoretical elasticity limits for isotropic cellular materials, while the hybrid design ShRComp achieves theoretical maximum across all relative densities. Compared to TPMS, truss, and plate lattices, the proposed structures exhibit higher uniaxial modulus. Manufactured via fused deposition modeling with ABS thermoplastic, their energy absorption capabilities are assessed through compression tests and impact simulations. The ShRComp lattice demonstrates superior energy absorption under compression compared to CompIED. Impact analyses of CompIED and ShRComp sandwich structures at varying velocities show exceptional resistance to perforation and higher impact absorption efficiency, outperforming other classes of sandwich structures at similar densities. These findings position these new and novel topologies as promising candidates for impact absorption applications.
  •  
10.
  • Almomani, Abdulla, et al. (författare)
  • Constitutive model calibration for the thermal viscoelastic-viscoplastic behavior of high density polyethylene under monotonic and cyclic loading
  • 2023
  • Ingår i: Polymer testing. - : Elsevier BV. - 0142-9418 .- 1873-2348. ; 118
  • Tidskriftsartikel (refereegranskat)abstract
    • High density polyethylene (HDPE) can show viscoelastic-viscoplastic behaviors under monotonic loads and a stress softening after reloading under cyclic ones. This sets a challenge in simultaneously representing such response in material constitutive models. In addition, due to the adoption of novel accelerated tests at higher temperatures, e.g., 95 degrees C, the need for a higher temperature calibration is motivated. Therefore, the objective of this study is threefold: (i) to investigate the capability of the three network viscoplastic (TNV) model in capturing HDPE thermo-viscoplasticity under monotonic and cyclic loads, (ii) to report observations on HDPE at various strain-rates and temperatures from 23 degrees C to 95 degrees C including the alpha-relaxation region (iii) to explore the ratcheting behavior of HDPE, i.e., cyclic creep. The FEA analysis based on the calibrated TNV model was successfully able to predict the HDPE behavior under static, quasi-static and dynamic loads. The predicted strain range Delta epsilon and midrange strain epsilon s of the cyclic creep showed good agreements. This implies that the TNV model can be a reliable candidate for HDPE engineering assessments. Findings of this work will have many industrial applications, e.g., products manufacturers or resin producers, in which HDPE is used under complex loads. Similar procedures can be followed for other thermoplastics which lays the basis for establishing a standard calibration guideline.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 33

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy