SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Batstone D J) srt2:(2015-2019)"

Search: WFRF:(Batstone D J) > (2015-2019)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Solon, K., et al. (author)
  • Plant-wide modelling of phosphorus transformations in wastewater treatment systems : Impacts of control and operational strategies
  • 2017
  • In: Water Research. - : Elsevier BV. - 0043-1354. ; 113, s. 97-110
  • Journal article (peer-reviewed)abstract
    • The objective of this paper is to report the effects that control/operational strategies may have on plant-wide phosphorus (P) transformations in wastewater treatment plants (WWTP). The development of a new set of biological (activated sludge, anaerobic digestion), physico-chemical (aqueous phase, precipitation, mass transfer) process models and model interfaces (between water and sludge line) were required to describe the required tri-phasic (gas, liquid, solid) compound transformations and the close interlinks between the P and the sulfur (S) and iron (Fe) cycles. A modified version of the Benchmark Simulation Model No. 2 (BSM2) (open loop) is used as test platform upon which three different operational alternatives (A1, A2, A3) are evaluated. Rigorous sensor and actuator models are also included in order to reproduce realistic control actions. Model-based analysis shows that the combination of an ammonium (SNHX ) and total suspended solids (XTSS) control strategy (A1) better adapts the system to influent dynamics, improves phosphate (SPO4 ) accumulation by phosphorus accumulating organisms (XPAO) (41%), increases nitrification/denitrification efficiency (18%) and reduces aeration energy (Eaeration) (21%). The addition of iron XFeCl3 ) for chemical P removal (A2) promotes the formation of ferric oxides (XHFO−H, XHFO−L), phosphate adsorption (XHFO−H,P, XHFO−L,P), co-precipitation (XHFO−H,P,old, XHFO−L,P,old) and consequently reduces the P levels in the effluent (from 2.8 to 0.9 g P.m−3). This also has an impact on the sludge line, with hydrogen sulfide production (GH2S) reduced (36%) due to iron sulfide (XFeS) precipitation. As a consequence, there is also a slightly higher energy production (Eproduction) from biogas. Lastly, the inclusion of a stripping and crystallization unit (A3) for P recovery reduces the quantity of P in the anaerobic digester supernatant returning to the water line and allows potential struvite (XMgNH4PO4 ) recovery ranging from 69 to 227 kg.day−1 depending on: (1) airflow (Qstripping); and, (2) magnesium (QMg(OH)2 ) addition. All the proposed alternatives are evaluated from an environmental and economical point of view using appropriate performance indices. Finally, some deficiencies and opportunities of the proposed approach when performing (plant-wide) wastewater treatment modelling/engineering projects are discussed.
  •  
3.
  • Arnell, Magnus, et al. (author)
  • Modelling anaerobic co-digestion in Benchmark Simulation Model No. 2 : Parameter estimation, substrate characterisation and plant-wide integration
  • 2016
  • In: Water Research. - : Elsevier BV. - 0043-1354 .- 1879-2448. ; 98, s. 138-146
  • Journal article (peer-reviewed)abstract
    • Anaerobic co-digestion is an emerging practice at wastewater treatment plants (WWTPs) to improve the energy balance and integrate waste management. Modelling of co-digestion in a plant-wide WWTP model is a powerful tool to assess the impact of co-substrate selection and dose strategy on digester performance and plant-wide effects. A feasible procedure to characterise and fractionate co-substrates COD for the Benchmark Simulation Model No. 2 (BSM2) was developed. This procedure is also applicable for the Anaerobic Digestion Model No. 1 (ADM1). Long chain fatty acid inhibition was included in the ADM1 model to allow for realistic modelling of lipid rich co-substrates. Sensitivity analysis revealed that, apart from the biodegradable fraction of COD, protein and lipid fractions are the most important fractions for methane production and digester stability, with at least two major failure modes identified through principal component analysis (PCA). The model and procedure were tested on bio-methane potential (BMP) tests on three substrates, each rich on carbohydrates, proteins or lipids with good predictive capability in all three cases. This model was then applied to a plant-wide simulation study which confirmed the positive effects of co-digestion on methane production and total operational cost. Simulations also revealed the importance of limiting the protein load to the anaerobic digester to avoid ammonia inhibition in the digester and overloading of the nitrogen removal processes in the water train. In contrast, the digester can treat relatively high loads of lipid rich substrates without prolonged disturbances.
  •  
4.
  • Feldman, H., et al. (author)
  • Assessing the effects of intra-granule precipitation in a full-scale industrial anaerobic digester
  • 2019
  • In: Water Science and Technology. - : IWA Publishing. - 0273-1223 .- 1996-9732. ; 79:7, s. 1327-1337
  • Journal article (peer-reviewed)abstract
    • In this paper, a multi-scale model is used to assess the multiple mineral precipitation potential in a full-scale anaerobic granular sludge system. Reactor behaviour is analysed under different operational conditions (addition/no addition of reject water from dewatering of lime-stabilized biomass) and periods of time (short/long term). Model predictions suggest that a higher contribution of reject water promotes the risk of intra-granule CaCO3 formation as a result of the increased quantity of calcium arriving with that stream combined with strong pH gradients within the biofilm. The distribution of these precipitates depends on: (i) reactor height; and (ii) granule size. The study also exposes the potential undesirable effects of the long-term addition of reject water (a decrease in energy recovery of 20% over a 100-day period), caused by loss in biomass activity (due to microbial displacement), and the reduced buffer capacity. This demonstrates how both short-term and long-term operational conditions may affect the formation of precipitates within anaerobic granules, and how it may influence methane production and consequently energy recovery.
  •  
5.
  • Feldman, H, et al. (author)
  • Modelling an industrial anaerobic granular reactor using a multi-scale approach
  • 2017
  • In: Water Research. - : Elsevier BV. - 0043-1354. ; 126, s. 488-500
  • Journal article (peer-reviewed)abstract
    • The objective of this paper is to show the results of an industrial project dealing with modelling of anaerobic digesters. A multi-scale mathematical approach is developed to describe reactor hydrodynamics, granule growth/distribution and microbial competition/inhibition for substrate/space within the biofilm. The main biochemical and physico-chemical processes in the model are based on the Anaerobic Digestion Model No 1 (ADM1) extended with the fate of phosphorus (P), sulfur (S) and ethanol (Et−OH). Wastewater dynamic conditions are reproduced and data frequency increased using the Benchmark Simulation Model No 2 (BSM2) influent generator. All models are tested using two plant data sets corresponding to different operational periods (#D1, #D2). Simulation results reveal that the proposed approach can satisfactorily describe the transformation of organics, nutrients and minerals, the production of methane, carbon dioxide and sulfide and the potential formation of precipitates within the bulk (average deviation between computer simulations and measurements for both #D1, #D2 is around 10%). Model predictions suggest a stratified structure within the granule which is the result of: 1) applied loading rates, 2) mass transfer limitations and 3) specific (bacterial) affinity for substrate. Hence, inerts (XI) and methanogens (Xac) are situated in the inner zone, and this fraction lowers as the radius increases favouring the presence of acidogens (Xsu,Xaa, Xfa) and acetogens (Xc4,Xpro). Additional simulations show the effects on the overall process performance when operational (pH) and loading (S:COD) conditions are modified. Lastly, the effect of intra-granular precipitation on the overall organic/inorganic distribution is assessed at: 1) different times; and, 2) reactor heights. Finally, the possibilities and opportunities offered by the proposed approach for conducting engineering optimization projects are discussed.
  •  
6.
  • Flores-Alsina, X., et al. (author)
  • Evaluation of anaerobic digestion post-treatment options using an integrated model-based approach
  • 2019
  • In: Water Research. - : Elsevier BV. - 0043-1354. ; 156, s. 264-276
  • Journal article (peer-reviewed)abstract
    • The objective of this paper is to present the main results of an engineering-research project dealing with model-based evaluation of waste streams treatment from a biotech company. This has been extensively done in domestic treatment systems, but is equally important, and with different challenges in industrial wastewater treatment. A new set of biological (activated sludge, anaerobic digestion), physicochemical (aqueous phase, precipitation, mass transfer) process models and model interfaces are required to describe removal of organics in an upflow anaerobic sludge blanket (UASB) reactor plus either traditional nitrification/denitrification (A 1 ) or partial nitritation (PN)/anammox (ANX) (A 2 ) processes. Model-based analysis shows that option A 1 requires a decrease in digestion energy recovery (E recovery ) in order to have enough organic substrate for subsequent post NO 3 reduction treatment (95 kWh.kg N −1 ). In contrast, A 2 in an aerobic granular sludge reactor allows for higher UASB conversion since N removal is carried out autotrophically. The study also reveals that the addition of an aerated pre-treatment unit prior to the PN/ANX (A 2 ) reactor promotes COD and H 2 S oxidation, CO 2 and CH 4 stripping, a pH increase (up to 8.5) and a reduction of the risk of intra-granular precipitation as well as sulfide inhibition. Simulations indicate clear differences regarding the microbial distribution/abundance within the biofilm in A 2 when comparing the two operational modes. Final results show the effects of different loading and operational conditions; dissolved oxygen (DO), Total Suspended Solids (TSS op ), energy recovery (E recovery ); on the overall process performance; N removal, aeration energy (E aeration ), net energy production (E recovery ); using response surfaces, highlighting the need of integrated approaches to avoid sub-optimal outcomes. The study shows the benefits of virtual plant simulation and demonstrates the potential of model-based evaluation when process engineers in industry have to decide between competing options.
  •  
7.
  • Kazadi Mbamba, Christian, et al. (author)
  • Plant-wide model-based analysis of iron dosage strategies for chemical phosphorus removal in wastewater treatment systems
  • 2019
  • In: Water Research. - : Elsevier BV. - 0043-1354 .- 1879-2448. ; 155, s. 12-25
  • Journal article (peer-reviewed)abstract
    • Stringent phosphorus discharge standards (i.e. 0.15–0.3 g P.m −3 ) in the Baltic area will compel wastewater treatment practice to augment enhanced biological phosphorus removal (EBPR) with chemical precipitation using metal salts. This study examines control of iron chemical dosing for phosphorus removal under dynamic loading conditions to optimize operational aspects of a membrane biological reactor (MBR) pilot plant. An upgraded version of the Benchmark Simulation Model No. 2 (BSM2) with an improved physico-chemical framework (PCF) is used to develop a plant-wide model for the pilot plant. The PCF consists of an equilibrium approach describing ion speciation and pairing, kinetic minerals precipitation (such as hydrous ferric oxides (HFO) and FePO 4 ) as well as adsorption and co-precipitation. Model performance is assessed against data sets from the pilot plant, evaluating the capability to describe water and sludge lines across the treatment process under steady-state operation. Simulated phosphorus differed as little as 5–10% (relative) from measured phosphorus, indicating that the model was representative of reality. The study also shows that environmental factors such as pH, as well operating conditions such as Fe/P molar ratios (1, 1.5 and 2), influence the concentration of dissolved phosphate in the effluent. The time constant of simultaneous precipitation in the calibrated model, due to a step change decrease/increase in FeSO 4 dosage, was found to be roughly 5 days, indicating a slow dynamic response due to a multi-step process involving dissolution, oxidation, precipitation, aging, adsorption and co-precipitation. The persistence effect of accumulated iron-precipitates (HFO particulates) in the activated sludge seemed important for phosphorus removal, and therefore solids retention time plays a crucial role according to the model. The aerobic tank was deemed to be the most suitable dosing location for FeSO 4 addition, due to high dissolved oxygen levels and good mixing conditions. Finally, dynamic model-based analyses show the benefits of using automatic control when dosing chemicals. © 2019 Elsevier Ltd
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view