SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bauters M.) srt2:(2022)"

Sökning: WFRF:(Bauters M.) > (2022)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lembrechts, Jonas J., et al. (författare)
  • Global maps of soil temperature
  • 2022
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 28:9, s. 3110-3144
  • Tidskriftsartikel (refereegranskat)abstract
    • Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean=3.0±2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6±2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7±2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.
  •  
2.
  • Makelele, I. A., et al. (författare)
  • Conservative N cycling despite high atmospheric deposition in early successional African tropical lowland forests
  • 2022
  • Ingår i: Plant and Soil. - : Springer Science and Business Media LLC. - 0032-079X .- 1573-5036. ; 477, s. 743-758
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Across the tropics, the share of secondary versus primary forests is strongly increasing. The high rate of biomass accumulation during this secondary succession relies on the availability of essential nutrients, such as nitrogen (N). Nitrogen primarily limits many young secondary forests in the tropics. However, recent studies have shown that forests of the Congo basin are subject to high inputs of atmospheric N deposition, potentially alleviating this N limitation in early succession. Methods To address this hypothesis, we assessed the N status along a successional gradient of secondary forests in the Congo basin. In a set-up of 18 plots implemented along six successional stages, we quantified year-round N deposition, N leaching, N2O emission and the N flux of litterfall and fine root assimilation. Additionally, we determined the N content and C:N stoichiometry for canopy leaves, fine roots, and litter, as well as delta N-15 of canopy leaves. Results We confirmed that these forests receive high amounts of atmospheric N deposition, with an increasing deposition as forest succession proceeds. Additionally, we noted lower C:N ratios, and higher N leaching losses, N2O emission, and foliar delta N-15 in older secondary forest (60 years). In contrast, higher foliar, litter and root C:N ratios, and lower foliar delta N-15, N leaching, and N2O emission in young (< 20 years) secondary forest were observed. Conclusions Altogether, we show that despite high N deposition, this early forest succession still shows conservative N cycling characteristics, which are likely indicating N limitation early on in secondary forest succession. As secondary succession advances, the N cycle gradually becomes more open.
  •  
3.
  • Tedersoo, Leho, et al. (författare)
  • Global patterns in endemicity and vulnerability of soil fungi.
  • 2022
  • Ingår i: Global change biology. - : Wiley. - 1365-2486 .- 1354-1013. ; 28:22, s. 6696-6710
  • Tidskriftsartikel (refereegranskat)abstract
    • Fungi are highly diverse organisms, which provide multiple ecosystem services. However, compared with charismatic animals and plants, the distribution patterns and conservation needs of fungi have been little explored. Here, we examined endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach. We found that the endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West-Central Africa, Sri Lanka, and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are predominantly vulnerable to drought, heat and land-cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests, and woodlands. We stress that more attention should be focused on the conservation of fungi, especially root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi in tropical regions as well as unicellular early-diverging groups and macrofungi in general. Given the low overlap between the endemicity of fungi and macroorganisms, but high conservation needs in both groups, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms.
  •  
4.
  • Franic, Iva, et al. (författare)
  • Worldwide diversity of endophytic fungi and insects associated with dormant tree twigs
  • 2022
  • Ingår i: Scientific Data. - : Nature Publishing Group. - 2052-4463. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • International trade in plants and climate change are two of the main factors causing damaging tree pests (i.e. fungi and insects) to spread into new areas. To mitigate these risks, a large-scale assessment of tree-associated fungi and insects is needed. We present records of endophytic fungi and insects in twigs of 17 angiosperm and gymnosperm genera, from 51 locations in 32 countries worldwide. Endophytic fungi were characterized by high-throughput sequencing of 352 samples from 145 tree species in 28 countries. Insects were reared from 227 samples of 109 tree species in 18 countries and sorted into taxonomic orders and feeding guilds. Herbivorous insects were grouped into morphospecies and were identified using molecular and morphological approaches. This dataset reveals the diversity of tree-associated taxa, as it contains 12,721 fungal Amplicon Sequence Variants and 208 herbivorous insect morphospecies, sampled across broad geographic and climatic gradients and for many tree species. This dataset will facilitate applied and fundamental studies on the distribution of fungal endophytes and insects in trees.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy