SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Beck Elvire De 1985) srt2:(2020-2024)"

Sökning: WFRF:(Beck Elvire De 1985) > (2020-2024)

  • Resultat 1-10 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Decin, L., et al. (författare)
  • (Sub)stellar companions shape the winds of evolved stars
  • 2020
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 369:6509, s. 1497-1500
  • Tidskriftsartikel (refereegranskat)abstract
    • Binary interactions dominate the evolution of massive stars, but their role is less clear for low- and intermediate-mass stars. The evolution of a spherical wind from an asymptotic giant branch (AGB) star into a nonspherical planetary nebula (PN) could be due to binary interactions. We observed a sample of AGB stars with the Atacama Large Millimeter/submillimeter Array (ALMA) and found that their winds exhibit distinct nonspherical geometries with morphological similarities to planetary nebulae (PNe). We infer that the same physics shapes both AGB winds and PNe; additionally, the morphology and AGB mass-loss rate are correlated. These characteristics can be explained by binary interaction. We propose an evolutionary scenario for AGB morphologies that is consistent with observed phenomena in AGB stars and PNe.
  •  
2.
  • Danilovich, T., et al. (författare)
  • ATOMIUM: halide molecules around the S-type AGB star W Aquilae
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 655
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. S-type asymptotic giant branch (AGB) stars are thought to be intermediates in the evolution of oxygen- to carbon-rich AGB stars. The chemical compositions of their circumstellar envelopes are also intermediate but have not been studied in as much detail as their carbon- and oxygen-rich counterparts. W Aql is a nearby S-type star, with well-known circumstellar parameters, making it an ideal object for in-depth study of less common molecules. Aims. We aim to determine the abundances of AlCl and AlF from rotational lines, which have been observed for the first time towards an S-type AGB star. In combination with models based on PACS observations, we aim to update our chemical kinetics network based on these results. Methods. We analyse ALMA observations towards W Aql of AlCl in the ground and first two vibrationally excited states and AlF in the ground vibrational state. Using radiative transfer models, we determine the abundances and spatial abundance distributions of (AlCl)-Cl-35, (AlCl)-Cl-37, and AlF. We also model HCl and HF emission and compare these models to PACS spectra to constrain the abundances of these species. Results. AlCl is found in clumps very close to the star, with emission confined within 0 ''.1 of the star. AlF emission is more extended, with faint emission extending 0 ''.2 to 0 ''.6 from the continuum peak. We find peak abundances, relative to H-2, of 1.7 x 10(-7) for (AlCl)-Cl-35, 7 x 10(-8) for (AlCl)-Cl-37, and 1 x 10(-7) for AlF. From the PACS spectra, we find abundances of 9.7 x 10(-8) and <= 10(-8), relative to H-2, for HCl and HF, respectively. Conclusions. The AlF abundance exceeds the solar F abundance, indicating that fluorine synthesised in the AGB star has already been dredged up to the surface of the star and ejected into the circumstellar envelope. From our analysis of chemical reactions in the wind, we conclude that AlF may participate in the dust formation process, but we cannot fully explain the rapid depletion of AlCl seen in the wind.
  •  
3.
  • Gottlieb, C. A., et al. (författare)
  • ATOMIUM: ALMA tracing the origins of molecules in dust forming oxygen rich M-type stars: Motivation, sample, calibration, and initial results
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 660
  • Tidskriftsartikel (refereegranskat)abstract
    • This overview paper presents atomium, a Large Programme in Cycle 6 with the Atacama Large Millimeter/submillimeter Array (ALMA). The goal of atomium is to understand the dynamics and the gas phase and dust formation chemistry in the winds of evolved asymptotic giant branch (AGB) and red supergiant (RSG) stars. A more general aim is to identify chemical processes applicable to other astrophysical environments. Seventeen oxygen-rich AGB and RSG stars spanning a range in (circum)stellar parameters and evolutionary phases were observed in a homogeneous observing strategy allowing for an unambiguous comparison. Data were obtained between 213.83 and 269.71 GHz at high (0.025-0.050), medium (0.13-0.24), and low (~1) angular resolution. The sensitivity per ~1.3 km s-1 channel was 1.5-5 mJy beam-1, and the line-free channels were used to image the millimetre wave continuum. Our primary molecules for studying the gas dynamics and dust formation are CO, SiO, AlO, AlOH, TiO, TiO2, and HCN; secondary molecules include SO, SO2, SiS, CS, H2O, and NaCl. The scientific motivation, survey design, sample properties, data reduction, and an overview of the data products are described. In addition, we highlight one scientific result - the wind kinematics of the atomium sources. Our analysis suggests that the atomium sources often have a slow wind acceleration, and a fraction of the gas reaches a velocity which can be up to a factor of two times larger than previously reported terminal velocities assuming isotropic expansion. Moreover, the wind kinematic profiles establish that the radial velocity described by the momentum equation for a spherical wind structure cannot capture the complexity of the velocity field. In fifteen sources, some molecular transitions other than 12CO v = 0 J = 2 - 1 reach a higher outflow velocity, with a spatial emission zone that is often greater than 30 stellar radii, but much less than the extent of CO. We propose that a binary interaction with a (sub)stellar companion may (partly) explain the non-monotonic behaviour of the projected velocity field. The atomium data hence provide a crucial benchmark for the wind dynamics of evolved stars in single and binary star models.
  •  
4.
  • Danilovich, Taissa, 1987, et al. (författare)
  • Chemical tracers of a highly eccentric AGB–main-sequence star binary
  • 2024
  • Ingår i: Nature Astronomy. - 2397-3366.
  • Tidskriftsartikel (refereegranskat)abstract
    • Binary interactions have been proposed to explain a variety of circumstellar structures seen around evolved stars, including asymptotic giant branch (AGB) stars and planetary nebulae. Studies resolving the circumstellar envelopes of AGB stars have revealed spirals, disks and bipolar outflows, with shaping attributed to interactions with a companion. Here we use a combined chemical and dynamical analysis to reveal a highly eccentric and long-period orbit for W Aquilae, a binary system containing an AGB star and a main-sequence companion. Our results are based on anisotropic SiN emission, the detections of irregular NS and SiC emission towards the S-type star, and density structures observed in the CO emission. These features are all interpreted as having formed during periastron interactions. Our astrochemistry-based method can yield stringent constraints on the orbital parameters of long-period binaries containing AGB stars, and will be applicable to other systems.
  •  
5.
  • De Marco, O., et al. (författare)
  • The messy death of a multiple star system and the resulting planetary nebula as observed by JWST
  • 2022
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 6:12, s. 1421-1432
  • Tidskriftsartikel (refereegranskat)abstract
    • Planetary nebulae—the ejected envelopes of red giant stars—provide us with a history of the last, mass-losing phases of 90% of stars initially more massive than the Sun. Here we analyse images of the planetary nebula NGC 3132 from the James Webb Space Telescope (JWST) Early Release Observations. A structured, extended hydrogen halo surrounding an ionized central bubble is imprinted with spiral structures, probably shaped by a low-mass companion orbiting the central star at about 40–60 au. The images also reveal a mid-infrared excess at the central star, interpreted as a dusty disk, which is indicative of an interaction with another closer companion. Including the previously known A-type visual companion, the progenitor of the NGC 3132 planetary nebula must have been at least a stellar quartet. The JWST images allow us to generate a model of the illumination, ionization and hydrodynamics of the molecular halo, demonstrating the power of JWST to investigate complex stellar outflows. Furthermore, new measurements of the A-type visual companion allow us to derive the value for the mass of the progenitor of a central star with excellent precision: 2.86 ± 0.06 M⊙. These results serve as pathfinders for future JWST observations of planetary nebulae, providing unique insight into fundamental astrophysical processes including colliding winds and binary star interactions, with implications for supernovae and gravitational-wave systems.
  •  
6.
  • Khouri, Theo, 1985, et al. (författare)
  • Inner dusty envelope of the AGB stars W Hydrae, SW Virginis, and R Crateris using SPHERE/ZIMPOL
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 635
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The asymptotic giant branch (AGB) marks the final evolutionary stage of stars with initial masses between ∼0.8 and 8 M⊙. During this phase, stars undergo copious mass loss, which contributes significantly to the enrichment of the interstellar medium. The well-accepted mass-loss mechanism requires radiation pressure acting on dust grains that form in the density-enhanced and extended AGB stellar atmospheres. The details of the mass-loss process are not yet well understood, however. For oxygen-rich AGB stars, which are the focus of this study, the dust grains that drive the wind are expected to scatter visible light very efficiently because their sizes are relative large. Aims. We study the distribution of dust in the inner wind of oxygen-rich AGB stars to advance our understanding of the wind-driving process. Methods. We observed light scattered off dust grains that form around three oxygen-rich AGB stars (W Hya, SW Vir, and R Crt) with mass-loss rates between 10-7 and 10-6 M⊙ yr-1 using the extreme-adaptive-optics imager and polarimeter SPHERE/ZIMPOL with three filters centred at 0.65, 0.75 and 0.82 μm. We compared the observed morphologies and the spectral dependence of the scattered light between the three sources and determined the radial profile, per image octant, of the dust density distribution around the closest target, W Hya. Results. We find the distribution of dust to be asymmetric for the three targets. A biconical morphology is seen for R Crt, with a position angle that is very similar to those inferred from interferometric observations of maser emission and of mid-infrared continuum emission. The cause of the biconical outflow cannot be inferred from the ZIMPOL data, but we speculate that it might be the consequence of a circumstellar disc or of the action of strong magnetic fields. The dust grains polarise light more efficiently at 0.65 μm for R Crt and SW Vir and at 0.82 μm for W Hya. This indicates that at the time of the observations, the grains around SW Vir and R Crt had sizes <0.1 μm, while those around W Hya were larger, with sizes ≳0.1 μm. The asymmetric distribution of dust around R Crt makes the interpretation more uncertain for this star, however. We find that polarised light is produced already from within the visible photosphere of W Hya, which we reproduce using models with an inner dust shell that is optically thick to scattering. We fit radiative transfer models to the radial profile of the polarised light observed around W Hya and find a steep dust density profile, with steepness varying considerably with direction. We find the wind-acceleration region of W Hya to extend to at least ∼7 R∗. This is in agreement with theoretical predictions of wind acceleration up to ∼12 R∗, and highlights that ZIMPOL observations probe the crucial region around AGB stars where dust forms and is accelerated.
  •  
7.
  • Andriantsaralaza, Miora, et al. (författare)
  • DEATHSTAR: Nearby AGB stars with the Atacama Compact Array: II. CO envelope sizes and asymmetries: The S-type stars
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 653
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We aim to constrain the sizes of, and investigate deviations from spherical symmetry in, the CO circumstellar envelopes (CSEs) of 16 S-type stars, along with an additional 7 and 4 CSEs of C-type and M-type AGB stars, respectively. Methods. We map the emission from the CO J = 2-1 and 3-2 lines observed with the Atacama Compact Array (ACA) and its total power (TP) antennas, and fit with a Gaussian distribution in the uv- and image planes for ACA-only and TP observations, respectively. The major axis of the fitted Gaussian for the CO(2-1) line data gives a first estimate of the size of the CO-line-emitting CSE. We investigate possible signs of deviation from spherical symmetry by analysing the line profiles and the minor-to-major axis ratio obtained from visibility fitting, and by investigating the deconvolved images. Results. The sizes of the CO-line-emitting CSEs of low-mass-loss-rate (low-MLR) S-type stars fall between the sizes of the CSEs of C-stars, which are larger, and those of M-stars, which are smaller, as expected because of the differences in their respective CO abundances and the dependence of the photodissociation rate on this quantity. The sizes of the low-MLR S-type stars show no dependence on circumstellar density, as measured by the ratio of the MLR to terminal outflow velocity, irrespective of variability type. The density dependence steepens for S-stars with higher MLRs. While the CO(2-1) brightness distribution size of the low-density S-stars is in general smaller than the predicted photodissociation radius (assuming the standard interstellar radiation field), the measured size of a few of the high-density sources is of the same order as the expected photodissociation radius. Furthermore, our results show that the CO CSEs of most of the S-stars in our sample are consistent with a spherically symmetric and smooth outflow. For some of the sources, clear and prominent asymmetric features are observed which are indicative of intrinsic circumstellar anisotropy. Conclusions. As the majority of the S-type CSEs of the stars in our sample are consistent with a spherical geometry, the CO envelope sizes obtained in this paper will be used to constrain detailed radiative transfer modelling to directly determine more accurate MLR estimates for the stars in our sample. For several of our sources that present signs of deviation from spherical symmetry, further high-resolution observations would be necessary to investigate the nature of, and the physical processes behind, these asymmetrical structures. This will provide further insight into the mass-loss process and its related chemistry in S-type AGB stars.
  •  
8.
  • Khouri, Theo, 1985, et al. (författare)
  • An empirical view of the extended atmosphere and inner envelope of the asymptotic giant branch star R Doradus I. Physical model based on CO lines
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 685
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The mass loss experienced on the asymptotic giant branch (AGB) at the end of the lives of low- and intermediate-mass stars is widely accepted to rely on radiation pressure acting on newly formed dust grains. Dust formation happens in the extended atmospheres of these stars, where the density, velocity, and temperature distributions are strongly affected by convection, stellar pulsation, and heating and cooling processes. The interaction between these processes and how that affects dust formation and growth is complex. Hence, characterising the extended atmospheres empirically is paramount to advance our understanding of the dust formation and wind-driving processes. Aims. We aim to determine the density, temperature, and velocity distributions of the gas in the extended atmosphere of the AGB star R Dor. Methods. We acquired observations using ALMA towards R Dor to study the gas through molecular line absorption and emission. We modelled the observed 12CO v = 0, J = 2−1, v = 1, J = 2−1, and 3−2 and 13CO v = 0, J = 3−2 lines using the 3D radiative transfer code LIME to determine the density, temperature, and velocity distributions up to a distance of four times the radius of the star at sub-millimetre wavelengths. Results. The high angular resolution of the sub-millimetre maps allows for even the stellar photosphere to be spatially resolved. By analysing the absorption against the star, we infer that the innermost layer in the near-side hemisphere is mostly falling towards the star, while gas in the layer above that seems to be mostly outflowing. Interestingly, the high angular resolution of the ALMA Band 7 observations reveal that the velocity field of the gas seen against the star is not homogenous across the stellar disc. The gas temperature and density distributions have to be very steep close to the star to fit the observed emission and absorption, but they become shallower for radii larger than ∼1.6 times the stellar sub-millimetre radius. While the gas mass in the innermost region is hundreds of times larger than the mass lost on average by R Dor per pulsation cycle, the gas densities just above this region are consistent with those expected based on the mass-loss rate and expansion velocity of the large-scale outflow. Our fits to the line profiles require the velocity distribution on the far side of the envelope to be mirrored, on average, with respect to that on the near side. Using a sharp absorption feature seen in the CO v = 0, J = 2−1 line, we constrained the standard deviation of the stochastic velocity distribution in the large-scale outflow to be .0.4 km s−1. We characterised two blobs detected in the CO v = 0, J = 2−1 line and found densities substantially larger than those of the surrounding gas. The two blobs also display expansion velocities that are high relative to that of the large-scale outflow. Monitoring the evolution of these blobs will lead to a better understanding of the role of these structures in the mass-loss process of R Dor.
  •  
9.
  • Maercker, Matthias, 1979, et al. (författare)
  • Investigating dust properties in AGB wind-ISM interaction regions
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 663
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. In this paper, we aim to constrain the dust mass and grain sizes in the interaction regions between the stellar winds and the interstellar medium (ISM) around asymptotic giant branch (AGB) stars. By describing the dust in these regions, we aim to shed light on the role of evolved low-mass stars in the origin of dust in galaxies. Methods. We use images in the far-infrared (FIR) at 70 and 160 μm to derive dust temperatures and dust masses in the wind-ISM interaction regions around a sample of carbon-rich and oxygen-rich AGB stars. The dust temperature and mass are determined in two ways: first, directly from the data using the ratio of the measured fluxes and assuming opacities for dust with a constant grain size of 0.1 μm, and then using three-dimensional dust-radiative transfer models spatially constrained by the observations. Each of the radiative transfer models contains one constant grain size, which is varied between 0.01 and 5.0 μm. Results. We find that the observed dust mass in the wind-ISM interaction regions is consistent with mass accumulated from the stellar winds. For the carbon-rich sources, adding the spatial constraints in the radiative transfer models results in preferentially larger grain sizes (-2 μm). For the oxygen-rich sources, the spatial constraints result in overly high temperatures in the models, making it impossible to fit the observed FIR ratio irrespective of the grain size used, indicating a more complex interplay of grain properties and the stellar radiation field. Conclusions. Our results have implications for how likely it is for the grains to survive the transition into the ISM, and the properties of dust particles that later act as seeds for grain growth in the ISM. However, our results for the oxygen-rich sources show that the derivation of dust properties is not straight forward, requiring more complex modelling.
  •  
10.
  • Ramstedt, Sofia, et al. (författare)
  • DEATHSTAR: Nearby AGB stars with the Atacama Compact Array I. CO envelope sizes and asymmetries: A new hope for accurate mass-loss-rate estimates
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 640
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. This is the first publication from the DEATHSTAR project. The overall goal of the project is to reduce the uncertainties of the observational estimates of mass-loss rates from evolved stars on the Asymptotic Giant Branch (AGB). Aim. The aim in this first publication is to constrain the sizes of the (CO)-C-12 emitting region from the circumstellar envelopes around 42 mostly southern AGB stars, of which 21 are M-type and 21 are C-type, using the Atacama Compact Array (ACA) at the Atacama Large Millimeter/submillimeter Array. The symmetry of the outflows is also investigated. Methods. Line emission from (CO)-C-12 J = 2 -> 1 and 3 -> 2 from all of the sources were mapped using the ACA. In this initial analysis, the emission distribution was fit to a Gaussian distribution in the uv-plane. A detailed radiative transfer analysis will be presented in a future publication. The major and minor axis of the best-fit Gaussian at the line center velocity of the (CO)-C-12 J = 2 -> 1 emission gives a first indication of the size of the emitting region. Furthermore, the fitting results, such as the Gaussian major and minor axis, center position, and the goodness of fit across both lines, constrain the symmetry of the emission distribution. For a subsample of sources, the measured emission distribution is compared to predictions from previous best-fit radiative transfer modeling results. Results. We find that the CO envelope sizes are, in general, larger for C-type than for M-type AGB stars, which is as expected if the CO/H-2 ratio is larger in C-type stars. Furthermore, the measurements show a relation between the measured (Gaussian) (CO)-C-12 J = 2 -> 1 size and circumstellar density that, while in broad agreement with photodissociation calculations, reveals large scatter and some systematic differences between the different stellar types. For lower mass-loss-rate irregular and semi-regular variables of both M- and C-type AGB stars, the (CO)-C-12 J = 2 -> 1 size appears to be independent of the ratio of the mass-loss rate to outflow velocity, which is a measure of circumstellar density. For the higher mass-loss-rate Mira stars, the (CO)-C-12 J = 2 -> 1 size clearly increases with circumstellar density, with larger sizes for the higher CO-abundance C-type stars. The M-type stars appear to be consistently smaller than predicted from photodissociation theory. The majority of the sources have CO envelope sizes that are consistent with a spherically symmetric, smooth outflow, at least on larger scales. For about a third of the sources, indications of strong asymmetries are detected. This is consistent with what was found in previous interferometric investigations of northern sources. Smaller scale asymmetries are found in a larger fraction of sources. Conclusions. These results for CO envelope radii and shapes can be used to constrain detailed radiative transfer modeling of the same stars so as to determine mass-loss rates that are independent of photodissociation models. For a large fraction of the sources, observations at higher spatial resolution will be necessary to deduce the nature and origin of the complex circumstellar dynamics revealed by our ACA observations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy